Picosecond Processes of Laser‐Excited Carriers in Silicon on Sapphire

The relaxation processes on a ps-time scale in silicon on sapphire, ion-beam damaged SOS and hydrogenated ion-beam damaged SOS are studied by means of time-resolved reflectivity and photoconductivity measurements. The excitation wavelength is changed to excite the carriers either near to the band edge or into the conduction band. Therefore, it is able to distinguish between different relaxation processes. The results can be explained using a 4-level model. The influence of the amorphization of samples on the relaxation time is discussed. Es werden Relaxationsprozesse in Silizium auf Saphire (SOS), ionenstrahlzerstortem SOS und hydrogenisiertem ionenstrahlzerstortem SOS im Pikosekundenbereich mit Hilfe von zeitaufgelosten Reflexions- und Photoleitfahigkeitsmessungen untersucht. Unter Verwendung der frequenzverdoppelten Strahlung eines optisch parametrischen Verstarkers, der von der zweiten Harmonischen eines Nd:YAG-Lasers gepumpt wird, werden die Ladungstrager entweder zur Leitungsbandkante oder ins Leitungsband hinein angeregt. Dadurch konnen unterschiedliche Relaxationsprozesse untersucht werden. Der Einflus des Amorphisierungsgrades auf die Relaxationszeit wird diskutiert.

[1]  F. Kerstan,et al.  Picosecond optoelectronic switching in semiconductors using a partly covered gap , 1984 .

[2]  R. Hammond,et al.  Observed circuit limits to time resolution in correlation measurements with Si‐on‐sapphire, GaAs, and InP picosecond photoconductors , 1984 .

[3]  M. Willander,et al.  Picosecond photoconductivity measurements of mobility and lifetime in silicon‐on‐sapphire films , 1984 .

[4]  W. Nowick,et al.  Comparative Studies of Fast Recombination Processes in Amorphous Silicon Films , 1983 .

[5]  H. Bergner,et al.  Investigation of Temporal and Spectral Properties of Ultrashort Light Pulses from an Optical Parametric Amplifier , 1982 .

[6]  J. Gibbons,et al.  Calculation of carrier and lattice temperatures induced in Si by picosecond laser pulses , 1982 .

[7]  F. Neri,et al.  A new evaporation method for preparing hydrogenated amorphous silicon films , 1982 .

[8]  J. Tauc,et al.  Hot-Carrier Thermalization in Amorphous Silicon , 1981 .

[9]  J. Tauc,et al.  Erratum: Hot-carrier thermalization in amorphous silicon (Physical Review Letters (1981) 47,9) , 1981 .

[10]  D. Auston,et al.  Thin film photoconductor mounting schemes for picosecond optical detectors , 1981 .

[11]  W. Augustyniak,et al.  Picosecond photoconductivity in radiation‐damaged silicon‐on‐sapphire films , 1981 .

[12]  John C. Bean,et al.  Picosecond optoelectronic detection, sampling, and correlation measurements in amorphous semiconductors , 1980 .

[13]  J. Joannopoulos,et al.  Electronic Structure of Hydrogenated Amorphous Silicon , 1980 .

[14]  D. Auston,et al.  An amorphous silicon photodetector for picosecond pulses , 1980 .

[15]  H. Schlötterer Interface properties of Si on sapphire and spinel , 1976 .

[16]  Ditmar Kranzer,et al.  Spatial dependence of the carrier lifetime in thin films of silicon on sapphire , 1974 .