Existence and multiplicity of solutions for nonlocal p(x)-Laplacian equations with nonlinear Neumann boundary conditions

AbstractIn this article, we study the nonlocal p(x)-Laplacian problem of the following form a(∫Ω1p(x)(|∇u|p(x)+|u|p(x))dx)(-div(|∇u|p(x)-2∇u)+|u|p(x)-2u)=b(∫ΩF(x,u)dx)f(x,u)inΩa∫Ω1p(x)(|∇u|p(x)+|u|p(x))dx|∇u|p(x)-2∂u∂ν=g(x,u)on∂Ω, where Ω is a smooth bounded domain and ν is the outward normal vector on the boundary ∂Ω, and F(x,u)=∫0uf(x,t)dt. By using the variational method and the theory of the variable exponent Sobolev space, under appropriate assumptions on f, g, a and b, we obtain some results on existence and multiplicity of solutions of the problem.Mathematics Subject Classification (2000): 35B38; 35D05; 35J20.

[1]  Jiří Rákosník,et al.  Density of smooth functions in Wk, p(x) (Ω) , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[2]  Giuseppina Autuori,et al.  Asymptotic stability for anisotropic Kirchhoff systems , 2009 .

[3]  Francisco Júlio S. A. Corrêa,et al.  On a class of problems involving a nonlocal operator , 2004, Appl. Math. Comput..

[4]  Qihu Zhang,et al.  Eigenvalues of p(x)-Laplacian Dirichlet problem , 2005 .

[5]  Jacques-Louis Lions,et al.  On Some Questions in Boundary Value Problems of Mathematical Physics , 1978 .

[6]  M. Alizadeh,et al.  A quasilinearization method for p-Laplacian equations with a nonlinear boundary condition , 2009 .

[7]  Shao-Gao Deng,et al.  A local mountain pass theorem and applications to a double perturbed p(x)-Laplacian equations , 2009, Appl. Math. Comput..

[8]  Giovany M. Figueiredo,et al.  On a p-Kirchhoff equation via Krasnoselskii's genus , 2009, Appl. Math. Lett..

[9]  Existence Results for Hamiltonian Elliptic Systems with Nonlinear Boundary Conditions , 1999 .

[10]  Qihu Zhang,et al.  Existence of solutions for p(x) -Laplacian dirichlet problem , 2003 .

[11]  M. Surnachev Density of smooth functions in weighted Sobolev spaces with variable exponent , 2014, Doklady Mathematics.

[12]  Michel Chipot,et al.  On a class of nonlocal nonlinear elliptic problems , 1992 .

[13]  J. Rossi,et al.  On the Fučik spectrum and a resonance problem for the p-Laplacian with a nonlinear boundary condition , 2004 .

[14]  Bei Hu Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition , 1994, Differential and Integral Equations.

[15]  Shao-Gao Deng,et al.  Nonexistence, existence and multiplicity of positive solutions to the p(x)-Laplacian nonlinear Neumann boundary value problem , 2010 .

[16]  Xianling Fan,et al.  Existence and multiplicity of solutions for p(x)-Laplacian equations in RN , 2004 .

[17]  Michel Chipot,et al.  Some remarks on non local elliptic and parabolic problems , 1997 .

[18]  S. Spagnolo,et al.  Global solvability for the degenerate Kirchhoff equation with real analytic data , 1992 .

[19]  Qing-Mei Zhou,et al.  EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR p(x)-LAPLACIAN EQUATIONS IN R , 2014 .

[20]  To Fu Ma,et al.  Positive solutions for a quasilinear elliptic equation of Kirchhoff type , 2005 .

[21]  Marcelo M. Cavalcanti,et al.  Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation , 2001, Advances in Differential Equations.

[22]  Stefano Panizzi,et al.  On the Well-Posedness of the Kirchhoff String , 1996 .

[23]  Guowei Dai,et al.  Existence of solutions for a p(x)-Kirchhoff-type equation , 2009 .

[24]  Positive solutions of elliptic equations with nonlinear boundary conditions , 2009 .

[25]  Jinghua Yao Solutions for Neumann boundary value problems involving p(x)-Laplace operators , 2008 .

[26]  Jiří Rákosník,et al.  Sobolev embeddings with variable exponent , 2000 .

[27]  Kanishka Perera,et al.  Nontrivial solutions of Kirchhoff-type problems via the Yang index , 2006 .

[28]  G. Afrouzi,et al.  A variational approach to a quasilinear elliptic problem involving the p-Laplacian and nonlinear boundary condition , 2009 .

[29]  Dun Zhao,et al.  On the Spaces L and W , 2001 .

[30]  Marcello Ponsiglione,et al.  A STABILITY RESULT FOR NONLINEAR NEUMANN PROBLEMS UNDER BOUNDARY VARIATIONS , 2002 .

[31]  Xiaoming He,et al.  Infinitely many positive solutions for Kirchhoff-type problems , 2009 .

[32]  Xianling Fan,et al.  On the Spaces Lp(x)(Ω) and Wm, p(x)(Ω) , 2001 .

[33]  Xianling Fan,et al.  On nonlocal p(x)-Laplacian Dirichlet problems☆ , 2010 .

[34]  Michel Chipot,et al.  On the solutions to some elliptic equations with nonlinear Neumann boundary conditions , 1996, Advances in Differential Equations.

[35]  J. Rossi,et al.  A convex-concave problem with a nonlinear boundary condition , 2004 .

[36]  M. Dreher,et al.  The Kirchhoff equation for the p-Laplacian , 2006 .

[37]  Giovany M. Figueiredo,et al.  On an elliptic equation of p-Kirchhoff type via variational methods , 2006, Bulletin of the Australian Mathematical Society.

[38]  Julián Fernández Bonder,et al.  Existence Results for the p-Laplacian with Nonlinear Boundary Conditions☆☆☆ , 2001 .

[39]  Julián Fernández Bonder,et al.  Existence for an elliptic system with nonlinear boundary conditions via fixed-point methods , 2001, Advances in Differential Equations.

[40]  Vicentiu D. Rădulescu,et al.  Existence and non-existence results for a quasilinear problem with nonlinear boundary condition , 2000 .

[41]  M. Dreher,et al.  The Wave Equation for the p-Laplacian , 2007 .

[42]  Dun Zhao,et al.  Sobolev Embedding Theorems , 2021, An Introduction to Sobolev Spaces.

[43]  Xianling Fan,et al.  Sobolev Embedding Theorems for Spaces Wk, p(x)(Ω) , 2001 .

[44]  Xianling Fan,et al.  On the sub-supersolution method for p(x)-Laplacian equations , 2007 .