Hybrid adaptive differential evolution for mobile robot localization

This paper introduces a new evolutionary optimization algorithm named hybrid adaptive differential evolution (HADE) and applies it to the mobile robot localization problem. The behaviour of evolutionary algorithms is highly dependent on the parameter selection. This algorithm utilizes an adaptive method to tune the mutation parameter to enhance the rate of convergence and eliminate the need for manual tuning. A hybrid method for mutation is also introduced to give more diversity to the population. This method which constantly switches between two mutation schemes guarantees a sufficient level of diversity to avoid local optima. We use a well-known test set in continuous domain to evaluate HADE’s performance against the standard version of differential evolution (DE) and a self-adaptive version of the algorithm. The results show that HADE outperforms DE and self-adaptive DE in three of four benchmarks. Moreover, we investigate the performance of HADE in the well-known localization problem of mobile robots. Results show that HADE is capable of estimating the robot’s pose accurately with a decreased number of individuals needed for convergence compared with DE and particle swarm optimization methods. Comparative study exposes HADE algorithm as a competitive method for mobile robot localization.

[1]  Rainer Storn,et al.  Minimizing the real functions of the ICEC'96 contest by differential evolution , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[2]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[3]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[4]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[5]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[6]  Daniela Zaharie,et al.  Influence of crossover on the behavior of Differential Evolution Algorithms , 2009, Appl. Soft Comput..

[7]  Wolfram Burgard,et al.  Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[8]  Andries Petrus Engelbrecht,et al.  Empirical analysis of self-adaptive differential evolution , 2007, Eur. J. Oper. Res..

[9]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[10]  Jens-Steffen Gutmann,et al.  Markov-Kalman localization for mobile robots , 2002, Object recognition supported by user interaction for service robots.

[11]  William H. Press,et al.  Numerical recipes in C , 2002 .

[12]  Josef Tvrdík Adaptation in differential evolution: A numerical comparison , 2009, Appl. Soft Comput..

[13]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[14]  Luis Moreno,et al.  Evolutionary filter for robust mobile robot global localization , 2006, Robotics Auton. Syst..

[15]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[16]  Cliff T. Ragsdale,et al.  Modified differential evolution: a greedy random strategy for genetic recombination , 2005 .

[17]  Janez Brest,et al.  Self-Adaptive Differential Evolution Algorithm in Constrained Real-Parameter Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[18]  Andrea Gasparri,et al.  A spatially structured genetic algorithm for multi-robot localization , 2009, Intell. Serv. Robotics.

[19]  Saeed Shiry Ghidary,et al.  Mobile robot global localization using differential evolution and particle swarm optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[20]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .