Divalent metal ion-peptide interactions probed by electron capture dissociation of trications

[1]  R. Heeren,et al.  Atypical behavior in the electron capture induced dissociation of biologically relevant transition metal ion complexes of the peptide hormone oxytocin , 2006 .

[2]  T. Chan,et al.  Electron capture dissociation of peptides metalated with alkaline-earth metal ions , 2006, Journal of the American Society for Mass Spectrometry.

[3]  R. Zubarev,et al.  Two-fold efficiency increase by selective excitation of ions for consecutive activation by ion-electron reactions and vibrational excitation in tandem fourier transform ion cyclotron resonance mass spectrometry. , 2005, Analytical chemistry.

[4]  K. Håkansson,et al.  Characterization of oligodeoxynucleotides by electron detachment dissociation fourier transform ion cyclotron resonance mass spectrometry. , 2005, Analytical chemistry.

[5]  Neil L Kelleher,et al.  Detection and localization of protein modifications by high resolution tandem mass spectrometry. , 2005, Mass spectrometry reviews.

[6]  H. Cooper,et al.  The role of electron capture dissociation in biomolecular analysis. , 2005, Mass spectrometry reviews.

[7]  E. Syrstad,et al.  Toward a general mechanism of electron capture dissociation , 2005, Journal of the American Society for Mass Spectrometry.

[8]  J. Simons,et al.  Coulomb-assisted dissociative electron attachment: application to a model peptide. , 2005, The journal of physical chemistry. A.

[9]  G. Mclendon,et al.  Metal-assembled modular proteins: toward functional protein design. , 2004, Accounts of chemical research.

[10]  R. Heeren,et al.  Electron capture dissociation at low temperatures reveals selective dissociations , 2004, Journal of the American Society for Mass Spectrometry.

[11]  Cheng Lin,et al.  Nonergodic and conformational control of the electron capture dissociation of protein cations. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Frank Kjeldsen,et al.  Electron capture dissociation distinguishes a single D-amino acid in a protein and probes the tertiary structure , 2004, Journal of the American Society for Mass Spectrometry.

[13]  E. Uggerud Electron capture dissociation of the disulfide bond—a quantum chemical model study , 2004 .

[14]  M. Jarrold,et al.  Metal ion interactions with polyalanine peptides , 2004 .

[15]  E. Williams,et al.  Effects of charge state and cationizing agent on the electron capture dissociation of a peptide. , 2004, Analytical chemistry.

[16]  Roman A Zubarev,et al.  Electron-capture dissociation tandem mass spectrometry. , 2004, Current opinion in biotechnology.

[17]  Native electron capture dissociation for the structural characterization of noncovalent interactions in native cytochrome C. , 2003, Angewandte Chemie.

[18]  S. A. McLuckey,et al.  Gas-phase peptide/protein cationizing agent switching via ion/ion reactions. , 2003, Journal of the American Chemical Society.

[19]  Metal-ion-binding peptides: from catalysis to protein tagging. , 2003, Angewandte Chemie.

[20]  F. Tureček,et al.  Peptide cation-radicals. A computational study of the competition between peptide N-Calpha bond cleavage and loss of the side chain in the [GlyPhe-NH2 + 2H]+. cation-radical. , 2003, Journal of mass spectrometry : JMS.

[21]  M. Witt,et al.  Combined infrared multiphoton dissociation and electron capture dissociation with a hollow electron beam in Fourier transform ion cyclotron resonance mass spectrometry. , 2003, Rapid communications in mass spectrometry : RCM.

[22]  N. Leymarie,et al.  Electron capture dissociation initiates a free radical reaction cascade. , 2003, Journal of the American Chemical Society.

[23]  F. Tureček N[bond]C(alpha) bond dissociation energies and kinetics in amide and peptide radicals. Is the dissociation a non-ergodic process? , 2003, Journal of the American Chemical Society.

[24]  F. Tureček,et al.  Mechanism and energetics of intramolecular hydrogen transfer in amide and peptide radicals and cation-radicals. , 2003, Journal of the American Chemical Society.

[25]  F. Tureček,et al.  Hydrogen Atom Adducts to the Amide Bond. Generation and Energetics of Amide Radicals in the Gas Phase , 2003 .

[26]  R. Zubarev Reactions of polypeptide ions with electrons in the gas phase. , 2003, Mass spectrometry reviews.

[27]  B. Budnik,et al.  Towards An Understanding of the Mechanism of Electron-Capture Dissociation: A Historical Perspective and Modern Ideas , 2002 .

[28]  F. McLafferty,et al.  Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation. , 2002, Journal of the American Chemical Society.

[29]  B. Budnik,et al.  Dissociative capture of hot (3-13 eV) electrons by polypeptide polycations: an efficient process accompanied by secondary fragmentation , 2002 .

[30]  Helen J Cooper,et al.  Characterization of amino acid side chain losses in electron capture dissociation , 2002, Journal of the American Society for Mass Spectrometry.

[31]  F. McLafferty,et al.  Top-down mass spectrometry of a 29-kDa protein for characterization of any posttranslational modification to within one residue , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  F. McLafferty,et al.  Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry. , 2002, Journal of the American Chemical Society.

[33]  A. J. Frank,et al.  Kinetic intermediates in the folding of gaseous protein ions characterized by electron capture dissociation mass spectrometry. , 2001, Journal of the American Chemical Society.

[34]  M. Emmett,et al.  High-sensitivity electron capture dissociation tandem FTICR mass spectrometry of microelectrosprayed peptides. , 2001, Analytical chemistry.

[35]  G. Glish,et al.  Gas-phase ion/ion interactions between peptides or proteins and iron ions in a quadrupole ion trap , 2001 .

[36]  J. Loo Probing protein–metal ion interactions by electrospray ionization mass spectrometry: enolase and nucleocapsid protein , 2001 .

[37]  E. Williams,et al.  Structure of cationized glycine, gly.m (m = be, mg, ca, sr, ba), in the gas phase: intrinsic effect of cation size on zwitterion stability. , 2000, The journal of physical chemistry. A.

[38]  O. Nemirovskiy,et al.  Intrinsic Ca2+ affinities of peptides: Application of the kinetic method to analogs of calcium-binding site III of rabbit skeletal troponin C , 2000, Journal of the American Society for Mass Spectrometry.

[39]  D. Clemmer,et al.  Metal-Mediated Peptide Ion Conformations in the Gas Phase , 2000 .

[40]  T. Wyttenbach,et al.  Conformations of biopolymers in the gas phase: a new mass spectrometric method 2 2 Dedicated to Bob , 2000 .

[41]  F. McLafferty,et al.  Electron capture dissociation for structural characterization of multiply charged protein cations. , 2000, Analytical chemistry.

[42]  C. Wesdemiotis,et al.  Probing the interaction of alkali and transition metal ions with bradykinin and its des-arginine derivatives via matrix-assisted laser desorption/ionization and postsource decay mass spectrometry , 1999 .

[43]  R. A. Jockusch,et al.  Structure of cationized arginine (arg.m, m = h, li, na, k, rb, and cs) in the gas phase: further evidence for zwitterionic arginine. , 1999, The journal of physical chemistry. A.

[44]  M. Gross,et al.  Electrospray ionization mass spectrometry and hydrogen/deuterium exchange for probing the interaction of calmodulin with calcium , 1999, Journal of the American Society for Mass Spectrometry.

[45]  Magnus Palmblad,et al.  Electron capture dissociation of substance P using a commercially available Fourier transform ion cyclotron resonance mass spectrometer. , 1999, Rapid communications in mass spectrometry : RCM.

[46]  Roman A. Zubarev,et al.  Electron Capture Dissociation of Gaseous Multiply-Charged Proteins Is Favored at Disulfide Bonds and Other Sites of High Hydrogen Atom Affinity , 1999 .

[47]  O. Nemirovskiy,et al.  Gas phase studies of the interactions of Fe2+ with cysteine-containing peptides , 1998, Journal of the American Society for Mass Spectrometry.

[48]  Y. Hoppilliard,et al.  Reduction of copper(II) complexes by electron capture in an electrospray ionization source , 1998 .

[49]  M. Gross,et al.  Determination of calcium binding sites in gas-phase small peptides by tandem mass spectrometry , 1998, Journal of the American Society for Mass Spectrometry.

[50]  F. McLafferty,et al.  Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process , 1998 .

[51]  N. Nibbering,et al.  Mass selection of ions in a Fourier transform ion cyclotron resonance trap using correlated harmonic excitation fields (CHEF) , 1997 .

[52]  M. Gross,et al.  Investigation of calcium-induced, noncovalent association of calmodulin with melittin by electrospray ionization mass spectrometry , 1997 .

[53]  F. Tureček,et al.  Metal-ligand redox reactions in gas-phase quaternary peptide-metal complexes by electrospray ionization mass spectrometry , 1997 .

[54]  Edward I. Solomon,et al.  Structural and Functional Aspects of Metal Sites in Biology. , 1996, Chemical reviews.

[55]  B. Freiser Organometallic ion chemistry , 1996 .

[56]  A G Marshall,et al.  A high-performance modular data system for Fourier transform ion cyclotron resonance mass spectrometry. , 1996, Rapid communications in mass spectrometry : RCM.

[57]  J. Loo,et al.  Gas-Phase Coordination Properties of Zn2+, Cu2+, Ni2+, and Co2+ with Histidine-Containing Peptides , 1995 .

[58]  J. Chayen Principles of bioinorganic chemistry , 1995 .

[59]  F. Tureček,et al.  COPPER(II) AMINO ACID COMPLEXES IN THE GAS PHASE , 1995 .

[60]  M Ikura,et al.  Molecular and structural basis of target recognition by calmodulin. , 1995, Annual review of biophysics and biomolecular structure.

[61]  Hong Zhao,et al.  INTRINSIC (GAS-PHASE) BINDING OF CO2+ AND NI2+ BY PEPTIDES : A DIRECT REFLECTION OF AQUEOUS-PHASE CHEMISTRY , 1994 .

[62]  Dennis M. Whitfield,et al.  Metal coordination to carbohydrates. Structures and function , 1993 .

[63]  Helmut Sigel,et al.  Interactions of metal ions with nucleotides and nucleic acids and their constituents , 1993 .

[64]  P. Caravatti,et al.  The ‘infinity cell’: A new trapped‐ion cell with radiofrequency covered trapping electrodes for fourier transform ion cyclotron resonance mass spectrometry , 1991 .

[65]  D. Williams,et al.  The Biological Chemistry of the Elements , 1991 .

[66]  L. Teesch,et al.  Intrinsic interactions between alkaline earth metal ions and peptides: a gas-phase study , 1990 .

[67]  M. Gross,et al.  Space charge effects in Fourier transform mass spectrometry. Mass calibration. , 1984, Analytical chemistry.

[68]  P. Roepstorff,et al.  Proposal for a common nomenclature for sequence ions in mass spectra of peptides. , 1984, Biomedical mass spectrometry.

[69]  R. Gluckstern,et al.  SPACE CHARGE EFFECTS. , 1970 .