Higher-order discrete maximum principle for 1D diffusion--reaction problems

Sufficient conditions for the validity of the discrete maximum principle (DMP) for a 1D diffusion-reaction problem -u^''+@k^2u=f with homogeneous Dirichlet boundary conditions discretized by the higher-order finite element method are presented. It is proved that the DMP is satisfied if the lengths h of all elements are shorter then one-third of the length of the entire domain and if @k^2h^2 is small enough for all elements. In general, the bounds for @k^2h^2 depend on the polynomial degree of the elements, on h, and on the size of the domain. The obtained conditions are simple and easy to verify. A technical assumption (nonnegativity of certain rational functions) was verified by computer for polynomial degrees up to 10. The paper contains an analysis of the discrete Green's function which can be of independent interest.

[1]  Charles N. Delzell,et al.  Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra , 2001 .

[2]  Antti Hannukainen,et al.  Discrete maximum principle for FE solutions of the diffusion-reaction problem on prismatic meshes , 2009 .

[3]  Sergey Korotov,et al.  The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem , 2008 .

[4]  Lung-an Ying,et al.  Partial differential equations and the finite element method , 2007, Math. Comput..

[5]  Tomáš Vejchodský,et al.  A weak discrete maximum principle for hp-FEM , 2007 .

[6]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[7]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[8]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[9]  Tomás Vejchodský,et al.  Discrete maximum principle for higher-order finite elements in 1D , 2007, Math. Comput..

[10]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[11]  Owe Axelsson,et al.  A combined method of local Green's functions and central difference method for singularly perturbed convection-diffusion problems , 2003 .

[12]  Hans D. Mittelmann,et al.  Some remarks on the discrete maximum-principle for finite elements of higher order , 1981, Computing.

[13]  V. Powers,et al.  An algorithm for sums of squares of real polynomials , 1998 .

[14]  Todd F. Dupont,et al.  Failure of the discrete maximum principle for an elliptic finite element problem , 2004, Math. Comput..

[15]  R. Varga,et al.  Discrete variational Green's function , 1970 .

[16]  M. Fiedler Special matrices and their applications in numerical mathematics , 1986 .

[17]  P. G. Ciarlet,et al.  Discrete variational Green's function. I , 1969 .

[18]  Alexandre Ern,et al.  Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .

[19]  Tomás Vejchodský,et al.  Discrete maximum principle for a 1D problem with piecewise-constant coefficients solved by hp-FEM , 2007, J. Num. Math..

[20]  Richard S. Varga,et al.  On a Discrete Maximum Principle , 1966 .

[21]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[22]  Raytcho D. Lazarov,et al.  Higher-order finite element methods , 2005, Math. Comput..

[23]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[24]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[25]  Sergey Korotov,et al.  Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions , 2005, Numerische Mathematik.

[26]  Tadeusz Styś,et al.  A discrete maximum principle , 1981 .

[27]  Róbert Horváth,et al.  Discrete maximum principle for linear parabolic problems solved on hybrid meshes , 2005 .

[28]  Tomáš Vejchodský,et al.  Higher‐order finite elements based on generalized eigenfunctions of the Laplacian , 2008 .

[29]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[30]  Martin Berzins Preserving positivity for hyperbolic PDEs using variable-order finite elements with bounded polynomials , 2004 .

[31]  E. G. Yanik Sufficient conditions for a discrete maximum principle for high order collocation methods , 1989 .

[32]  Jens Markus Melenk,et al.  hp-Finite Element Methods for Singular Perturbations , 2002 .