Boundary element methods: an overview

Variational methods for boundary integral equations deal with the weak formulations of boundary integral equations. Their numerical discretizations are known as the boundary element methods. This paper gives an overview of the method from both theoretical and numerical point of view. It summarizes the main results obtained by the author and his collaborators over the last 30 years. Fundamental theory and various applications will be illustrated through simple examples. Some numerical experiments in elasticity as well as in fluid mechanics will be included to demonstrate the efficiency of the methods.

[1]  G. Hsiao,et al.  A gårding's inequality for variational problems with constraints , 1994 .

[2]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[3]  Eckart Schnack,et al.  A hybrid coupled finite-boundary element method in elasticity , 1999 .

[4]  W. Wendland,et al.  A finite element method for some integral equations of the first kind , 1977 .

[5]  Ernst P. Stephan,et al.  Remarks to Galerkin and least squares methods with finite elements for general elliptic problems , 1976 .

[6]  G. C. Hsiao,et al.  Boundary Element Methods: Foundation and Error Analysis , 2004 .

[7]  George C. Hsiao,et al.  A Galerkin collocation method for some integral equations of the first kind , 1980, Computing.

[8]  J. Planchard,et al.  Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans $\mathbf {R}^3$ , 1973 .

[9]  Cell boundary element methods for elliptic problems , 2007 .

[10]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[11]  Jindřich Nečas,et al.  Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle , 1961 .

[12]  Siegfried Prössdorf,et al.  A Generalization of the Arnold-Wendland Lemma to a Modified Collocation Method for Boundary Integral Equations in ℝ3† , 1993 .

[13]  Martin Costabel,et al.  Duality estimates for the numerical solution of integral equations , 1989 .

[14]  R. Kleinman,et al.  Applications of boundary integral equation methods in 3D electromagnetic scattering , 1999 .

[15]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[16]  Eric Darrigrand,et al.  Coupling of fast multipole method and microlocal discretization for the 3-D Helmholtz equation , 2002 .

[17]  G. Hsiao,et al.  Solution of Boundary Value Problems by Integral Equations of the First Kind , 1973 .

[18]  G. C. Hsiao,et al.  Observations on the numerical stability of the Galerkin method , 1998, Adv. Comput. Math..

[19]  Wendland W.L. Costabel M.,et al.  Strong ellipticity of boundary integral operators. , 1986 .

[20]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[21]  Frank Natterer,et al.  The finite element method for ill-posed problems , 1977 .

[22]  M. N. Le Roux Méthode d’éléments finis pour la résolution numérique de problèmes extérieurs en dimension $2$ , 1977 .

[23]  George C. Hsiao,et al.  Hybrid Coupled Finite-Boundary Element Methods for Elliptical Systems of Second Order , 2000 .

[24]  G. Hsiao On the stability of integral equations of the first kind with logarithmic kernels , 1986 .

[25]  G. Of,et al.  Applications of a fast multipole Galerkin in boundary element method in linear elastostatics , 2005 .

[26]  Ian H. Sloan,et al.  Error analysis of boundary integral methods , 1992, Acta Numerica.

[27]  Wolfgang L. Wendland,et al.  Some applications of a galerkin‐collocation method for boundary integral equations of the first kind , 1984 .

[28]  Douglas N. Arnold,et al.  On the asymptotic convergence of collocation methods , 1983 .