Evaluation of feature point detection in high dynamic range imagery

We study suitability of HDR and tone mapped imagery for detection of feature points.We test 6 detectors using 16 image formats under various scene changes.Results show that current FP detectors are not well tuned to process HDR images.Tone mapping is the best contemporary solution for FP detection in HDR imagery.A gradient-based local tone mapper with contrasts boosting produces best results. This paper evaluates the suitability of High Dynamic Range (HDR) imaging techniques for Feature Point (FP) detection under demanding lighting conditions. The FPs are evaluated in HDR, tone mapped HDR, and traditional Low Dynamic Range (LDR) images. Eleven global and local tone mapping operators are evaluated and six widely used FP detectors are used in the experiments (Harris, Shi-Tomasi, DoG, Fast Hessian, FAST, and BRISK). The distribution and repeatability rate of FPs are studied under changes of camera viewpoint, camera distance, and scene lighting. The results of the experiments show that current FP detectors cannot cope with HDR images well. The best contemporary solution is thus tone mapping of HDR images using a local tone mapper as a pre-processing step.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  E. Reinhard Photographic Tone Reproduction for Digital Images , 2002 .

[3]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[4]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[5]  Raanan Fattal,et al.  Edge-avoiding wavelets and their applications , 2009, ACM Trans. Graph..

[6]  William B. Green Digital Image Processing: A Systems Approach , 1988 .

[7]  Tom Drummond,et al.  Faster and Better: A Machine Learning Approach to Corner Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Hans-Peter Seidel,et al.  A perceptual framework for contrast processing of high dynamic range images , 2006, TAP.

[9]  K. Wallis Seasonal Adjustment and Relations Between Variables , 1974 .

[10]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[11]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[12]  Dani Lischinski,et al.  Gradient Domain High Dynamic Range Compression , 2023 .

[13]  Pietro Perona,et al.  Evaluation of Features Detectors and Descriptors Based on 3D Objects , 2005, ICCV.

[14]  Martin J. Turner,et al.  FAW for Multi-exposure Fusion Features , 2011, PSIVT.

[15]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[16]  Keith Markham,et al.  Towards Object Recognition using HDR Video, Stereoscopic Depth Information and SIFT , 2009, TPCG.

[17]  Christine D. Piatko,et al.  A visibility matching tone reproduction operator for high dynamic range scenes , 1997 .

[18]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH.

[19]  H. Barlow Vision Science: Photons to Phenomenology by Stephen E. Palmer , 2000, Trends in Cognitive Sciences.

[20]  Horst Bischof,et al.  A novel performance evaluation method of local detectors on non-planar scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[21]  A. Koschan,et al.  COMPARISON AND EVALUATION OF FEATURE POINT DETECTORS , 2006 .

[22]  R. Lyons,et al.  DC Blocker Algorithms[DSP Tips & Tricks] , 2008, IEEE Signal Processing Magazine.

[23]  Tobias Höllerer,et al.  Evaluation of Interest Point Detectors and Feature Descriptors for Visual Tracking , 2011, International Journal of Computer Vision.

[24]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[25]  Didier Stricker,et al.  Robust Point Matching in HDRI through Estimation of Illumination Distribution , 2011, DAGM-Symposium.

[26]  Qi Tian,et al.  A survey of recent advances in visual feature detection , 2015, Neurocomputing.

[27]  Erik Reinhard,et al.  Real Time Automated Tone Mapping System for HDR Video , 2012, ICIP 2012.

[28]  Matthew A. Brown,et al.  Invariant Features from Interest Point Groups , 2002, BMVC.

[29]  Erik Reinhard,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Dynamic Range Reduction Inspired by Photoreceptor Physiology , 2022 .

[30]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[31]  C. Fraser,et al.  INTEREST OPERATORS IN CLOSE-RANGE OBJECT RECONSTRUCTION , 2008 .

[32]  Tom Drummond,et al.  Fusing points and lines for high performance tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[33]  C. Fraser,et al.  Interest operators for feature‐based matching in close range photogrammetry , 2010 .

[34]  Rafal Mantiuk,et al.  Display adaptive tone mapping , 2008, SIGGRAPH 2008.

[35]  Roland Brémond,et al.  Evaluation of tone mapping operators in night-time virtual worlds , 2012, Virtual Reality.

[36]  Óscar Martínez Mozos,et al.  A comparative evaluation of interest point detectors and local descriptors for visual SLAM , 2010, Machine Vision and Applications.

[37]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[39]  Pavel Zemcík,et al.  Feature point detection under extreme lighting conditions , 2013, SCCG.

[40]  Michael Wimmer,et al.  Evaluation of HDR tone mapping methods using essential perceptual attributes , 2008, Comput. Graph..

[41]  Karel J. Zuiderveld,et al.  Contrast Limited Adaptive Histogram Equalization , 1994, Graphics Gems.

[42]  Kurt Debattista,et al.  Advanced High Dynamic Range Imaging: Theory and Practice , 2011 .

[43]  Anastasios Doulamis,et al.  Hdr Imaging for Feature Detection on Detailed Architectural Scenes , 2015 .