Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?

Stromatolites are attached, lithified sedimentary growth structures, accretionary away from a point or limited surface of initiation. Though the accretion process is commonly regarded to result from the sediment trapping or precipitation-inducing activities of microbial mats, little evidence of this process is preserved in most Precambrian stromatolites. The successful study and interpretation of stromatolites requires a process-based approach, oriented toward deconvolving the replacement textures of ancient stromatolites. The effects of diagenetic recrystallization first must be accounted for, followed by analysis of lamination textures and deduction of possible accretion mechanisms. Accretion hypotheses can be tested using numerical simulations based on modem stromatolite growth processes. Application of this approach has shown that stromatolites were originally formed largely through in situ precipitation of laminae during Archean and older Proterozoic times, but that younger Proterozoic stromatolites grew largely through the accretion of carbonate sediments, most likely through the physical process of microbial trapping and binding. This trend most likely reflects long-term evolution of the earth's environment rather than microbial communities.

[1]  R. Riding Cyanophyte calcification and changes in ocean chemistry , 1982, Nature.

[2]  B. Parker,et al.  Modern Stromatolites in Antarctic Dry Valley Lakes , 1981 .

[3]  Anthony T. Jones,et al.  Giant subtidal stromatolites forming in normal salinity waters , 1986, Nature.

[4]  I. Fairchild Origins of carbonate in Neoproterozoic stromatolites and the identification of modern analogues , 1991 .

[5]  M. Walter,et al.  Stromatolites from Middle and Late Proterozoic sequences in the McArthur and Georgina Basins and the Mount Isa Province, Australia , 1988 .

[6]  R. Steneck,et al.  Growth History of Stromatolites in a Holocene Fringing Reef, Stocking Island, Bahamas , 1996 .

[7]  J. Bartley Actualistic taphonomy of cyanobacteria; implications for the Precambrian fossil record , 1996 .

[8]  Hiroshi Fujikawa,et al.  Diffusion-limited growth in bacterial colony formation , 1990 .

[9]  M. Bender,et al.  Tracers in the Sea , 1984 .

[10]  Hayakawa,et al.  Fractal structure and cluster statistics of zinc-metal trees de- posited on a line electrode. , 1985, Physical review. A, General physics.

[11]  B. Jørgensen,et al.  The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat. , 1990, Limnology and oceanography.

[12]  J. Grotzinger,et al.  Evaporitic Subtidal Stromatolites Produced by In Situ Precipitation: Textures, Facies Associations, and Temporal Significance , 2000 .

[13]  K. Wolf Carbonate sediments and their diagenesis , 1973 .

[14]  D. Bottjer,et al.  Early Triassic stromatolites as post-mass extinction disaster forms , 1992 .

[15]  Daniel Platt,et al.  Diffusion Limited Aggregation , 1995 .

[16]  A. Knoll,et al.  Carbonate deposition during the late Proterozoic Era: an example from Spitsbergen. , 1990, American journal of science.

[17]  J. Grotzinger Cyclicity and paleoenvironmental dynamics, Rocknest platform, northwest Canada , 1986 .

[18]  A. Knoll,et al.  Taphonomic and evolutionary changes across the Mesoproterozoic-Neoproterozoic transition. , 1995, Neues Jahrbuch fur Geologie und Palaontologie. Abhandlungen.

[19]  H. Berg Random Walks in Biology , 2018 .

[20]  M. Foote THE EVOLUTION OF MORPHOLOGICAL DIVERSITY , 1997 .

[21]  R. Ginsburg,et al.  The Influence of Marine bottom Communities on the Depositional Environment of Sediments , 1958, The Journal of Geology.

[22]  A. Knoll,et al.  Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic/Cambrian transition. , 1993, Palaios.

[23]  B. W. Logan,et al.  Algal Mats, Cryptalgal Fabrics, and Structures, Hamelin Pool, Western Australia , 1972 .

[24]  J. Schopf,et al.  Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. , 1987, Science.

[25]  W. H. Bradley,et al.  Algae reefs and oolites of the Green River formation , 1929 .

[26]  T. Vicsek,et al.  Generic modelling of cooperative growth patterns in bacterial colonies , 1994, Nature.

[27]  J. Grotzinger,et al.  Herringbone Calcite: Petrography and Environmental Significance , 1996 .

[28]  W. Zempolich,et al.  Diagenesis of late Proterozoic carbonates; the Beck Spring Dolomite of eastern California , 1988 .

[29]  J. Mckenzie,et al.  Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas , 1998 .

[30]  J. Grotzinger Facies and Evolution of Precambrian Carbonate Depositional Systems: Emergence of the Modern Platform Archetype , 1989 .

[31]  J. Mckenzie,et al.  Messinian stromatolite‐thrombolite associations, Santa Pola, SE Spain: an analogue for the Palaeozoic? , 1997 .

[32]  Dawn Y. Sumner,et al.  Late Archean calcite-microbe interactions; two morphologically distinct microbial communities that affected calcite nucleation differently , 1997 .

[33]  W. Broecker,et al.  Degree of saturation of CaCO3 in the oceans , 1969 .

[34]  A. Knoll,et al.  The genesis and time distribution of two distinctive Proterozoic stromatolite microstructures , 1998 .

[35]  C. Monty Chapter 5.1 The Origin and Development of Cryptalgal Fabrics , 1976 .

[36]  P. Sadler Sediment Accumulation Rates and the Completeness of Stratigraphic Sections , 1981, The Journal of Geology.

[37]  C. Walcott Pre-Cambrian Algonkian Algal Flora , 1914 .

[38]  Ernst Kalkowsky Oolith und Stromatolith im norddeutschen Buntsandstein. , 1908 .

[39]  P. Garrett Phanerozoic Stromatolites: Noncompetitive Ecologic Restriction by Grazing and Burrowing Animals , 1970, Science.

[40]  J. Donaldson Chapter 10.2 Paleoecology of Conophyton and Associated Stromatolites in the Precambrian Dismal Lakes and Rae Groups, Canada , 1976 .

[41]  J. Kasting,et al.  New Constraints on Precambrian Ocean Composition , 1993, The Journal of Geology.

[42]  A. M. Thorne,et al.  Biostratigraphic significance of stromatolites in upward shallowing sequences of the early proterozoic duck creek dolomite, Western Australia , 1985 .

[43]  J. Hayes Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis , 1983 .

[44]  J. Bertrand-Sarfati Chapter 5.2 An Attempt to Classify Late Precambrian Stromatolite Microstructures , 1976 .

[45]  A. B. Ronov PROBABLE CHANGES IN THE COMPOSITION OF SEA WATER DURING THE COURSE OF GEOLOGICAL TIME1 , 1968 .

[46]  B. Constantz The Primary Surface Area of Corals and Variations in Their Susceptibility to Diagenesis , 1986 .

[47]  S M Awramik,et al.  Precambrian Columnar Stromatolite Diversity: Reflection of Metazoan Appearance , 1971, Science.

[48]  D. Banerjee,et al.  Morphometric analysis of Proterozoic stromatolites from India — preliminary report on testing of a new technique , 1986 .

[49]  S. Golubić Modern Stromatolites: A Review , 1991 .

[50]  D. Canfield,et al.  Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat , 1993, Geochimica et cosmochimica acta.

[51]  T. D. Brock,et al.  Structure, Growth, and Decomposition of Laminated Algal-Bacterial Mats in Alkaline Hot Springs , 1977, Applied and environmental microbiology.

[52]  M. Tucker,et al.  Radiaxial fibrous calcite: a replacement after acicular carbonate , 1973 .

[53]  D. Canfield,et al.  Carbonate Precipitation and Dissolution: Its Relevance to Fossil Preservation , 1991 .

[54]  A. J. Eardley Sediments of Great Salt Lake , 1966 .

[55]  J. Dravis Hardened Subtidal Stromatolites, Bahamas , 1983, Science.

[56]  John P. Grotzinger,et al.  An abiotic model for stromatolite morphogenesis , 1996, Nature.

[57]  Linda C. Kah,et al.  Microbenthic distribution of Proterozoic tidal flats: environmental and taphonomic considerations. , 1996, Geology.

[58]  B. Jørgensen,et al.  Microelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial mat1 , 1983 .

[59]  S. Golubić,et al.  COMPARISON OF HOLOCENE AND MID-PRECAMBRIAN ENTOPHYSALIDACEAE (CYANOPHYTA) IN , 1976 .

[60]  M. Walter,et al.  Links between the rise of the metazoa and the decline of stromatolites , 1985 .

[61]  J. Grotzinger,et al.  Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? , 1996, Geology.

[62]  A. Knoll,et al.  The early evolution of eukaryotes: a geological perspective. , 1992, Science.

[63]  C. Monty Precambrian background and Phanerozoic history of stromatolitic communities, an overview , 1974 .

[64]  A. Barabasi,et al.  Fractal Concepts in Surface Growth: Frontmatter , 1995 .

[65]  A. Knoll,et al.  Anomalous carbonate precipitates: is the Precambrian the key to the Permian? , 1995, Palaios.

[66]  Conrad D. Gabelein Biologic control of stromatolite microstructure: implications for Precambrian time stratigraphy , 1974 .

[67]  J. Grotzinger,et al.  Evidence for primary aragonite precipitation, lower Proterozoic (1.9 Ga) Rocknest dolomite, Wopmay orogen, northwest Canada , 1983 .

[68]  A. G. Fischer FOSSILS, EARLY LIFE, AND ATMOSPHERIC HISTORY. , 1965 .

[69]  M. Schidlowski,et al.  Early Organic Evolution: Implications for Mineral and Energy Resources , 1992 .

[70]  R. J. Horodyski Stromatolites of the lower Missoula Group (Middle Proterozoic), Belt Supergroup, Glacier National Park, Montana , 1975 .

[71]  J. Grotzinger Evolution of early Proterozoic passive-margin carbonate platform, Rocknest Formation, Wopmay Orogen, Northwest Territories, Canada , 1986 .

[72]  S. Awramik The History and Significance of Stromatolites , 1992 .

[73]  A. Knoll,et al.  Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. , 1995, Lethaia.

[74]  A. Kendall Radiaxial Fibrous Calcite: A Reappraisal , 1985 .

[75]  M. Black The Algal Sediments of Andros Island, Bahamas , 1932 .

[76]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[77]  G. D. Jackson,et al.  Proterozoic ministromatolites with radial‐fibrous fabric , 1987 .

[78]  G. Vojta,et al.  Fractal Concepts in Surface Growth , 1996 .

[79]  B. W. Logan,et al.  Cryptozoon and Associate Stromatolites from the Recent, Shark Bay, Western Australia , 1961, The Journal of Geology.

[80]  A. Knoll,et al.  Lithification and Fabric Genesis in Precipitated Stromatolites and Associated Peritidal Carbonates, Mesoproterozoic Billyakh Group, Siberia , 2000 .

[81]  J. Schieber The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Mid-Proterozoic basins , 1986 .

[82]  H. Chafetz,et al.  Bacterially Induced Lithification of Microbial Mats , 1992 .

[83]  A. Pentecost,et al.  Tussocky Microstructure, a Biological Event in Upper Proterozoic Stromatolites; Comparisons with Modern Freshwater Stromatolite Builders , 1992 .

[84]  A. J. Kaufman,et al.  Neoproterozoic Fossils in Mesoproterozoic Rocks? Chemostratigraphic Resolution of a Biostratigraphic Conundrum from the North China Platform , 1997 .

[85]  S. N. Serebryakov,et al.  Riphean and Recent stromatolites: a comparison , 1974 .

[86]  Wolfgang E. Krumbein,et al.  Stromatolites—the Challenge of a Term in Space and Time , 1983 .

[87]  Stanley M. Awramik,et al.  Stromatolite morphogenesis—progress and problems , 1979 .

[88]  A. Knoll Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[89]  J. Farmer,et al.  Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. , 1996, Ciba Foundation symposium.

[90]  J. Grotzinger,et al.  Controls on Fabric Development and Morphology of Tufas and Stromatolites, Uppermost Pethel Group (1.8 Ga), Great Slave Lake, Northwest Canada , 2000 .

[91]  H. Hofmann,et al.  Precambrian Stromatolites: Image Analysis of Lamina Shape , 1982, The Journal of Geology.

[92]  A. Kendall Fascicular-optic Calcite: A Replacement of Bundled Acicular Carbonate Cements , 1977 .

[93]  D. D. Des Marais The biogeochemistry of hypersaline microbial mats. , 1995, Advances in microbial ecology.

[94]  B. Jørgensen,et al.  Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. , 1988, Limnology and oceanography.

[95]  N. James,et al.  Thrombolites and stromatolites; two distinct types of microbial structures , 1986 .