Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?
暂无分享,去创建一个
[1] R. Riding. Cyanophyte calcification and changes in ocean chemistry , 1982, Nature.
[2] B. Parker,et al. Modern Stromatolites in Antarctic Dry Valley Lakes , 1981 .
[3] Anthony T. Jones,et al. Giant subtidal stromatolites forming in normal salinity waters , 1986, Nature.
[4] I. Fairchild. Origins of carbonate in Neoproterozoic stromatolites and the identification of modern analogues , 1991 .
[5] M. Walter,et al. Stromatolites from Middle and Late Proterozoic sequences in the McArthur and Georgina Basins and the Mount Isa Province, Australia , 1988 .
[6] R. Steneck,et al. Growth History of Stromatolites in a Holocene Fringing Reef, Stocking Island, Bahamas , 1996 .
[7] J. Bartley. Actualistic taphonomy of cyanobacteria; implications for the Precambrian fossil record , 1996 .
[8] Hiroshi Fujikawa,et al. Diffusion-limited growth in bacterial colony formation , 1990 .
[9] M. Bender,et al. Tracers in the Sea , 1984 .
[10] Hayakawa,et al. Fractal structure and cluster statistics of zinc-metal trees de- posited on a line electrode. , 1985, Physical review. A, General physics.
[11] B. Jørgensen,et al. The diffusive boundary layer of sediments: oxygen microgradients over a microbial mat. , 1990, Limnology and oceanography.
[12] J. Grotzinger,et al. Evaporitic Subtidal Stromatolites Produced by In Situ Precipitation: Textures, Facies Associations, and Temporal Significance , 2000 .
[13] K. Wolf. Carbonate sediments and their diagenesis , 1973 .
[14] D. Bottjer,et al. Early Triassic stromatolites as post-mass extinction disaster forms , 1992 .
[15] Daniel Platt,et al. Diffusion Limited Aggregation , 1995 .
[16] A. Knoll,et al. Carbonate deposition during the late Proterozoic Era: an example from Spitsbergen. , 1990, American journal of science.
[17] J. Grotzinger. Cyclicity and paleoenvironmental dynamics, Rocknest platform, northwest Canada , 1986 .
[18] A. Knoll,et al. Taphonomic and evolutionary changes across the Mesoproterozoic-Neoproterozoic transition. , 1995, Neues Jahrbuch fur Geologie und Palaontologie. Abhandlungen.
[19] H. Berg. Random Walks in Biology , 2018 .
[20] M. Foote. THE EVOLUTION OF MORPHOLOGICAL DIVERSITY , 1997 .
[21] R. Ginsburg,et al. The Influence of Marine bottom Communities on the Depositional Environment of Sediments , 1958, The Journal of Geology.
[22] A. Knoll,et al. Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic/Cambrian transition. , 1993, Palaios.
[23] B. W. Logan,et al. Algal Mats, Cryptalgal Fabrics, and Structures, Hamelin Pool, Western Australia , 1972 .
[24] J. Schopf,et al. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. , 1987, Science.
[25] W. H. Bradley,et al. Algae reefs and oolites of the Green River formation , 1929 .
[26] T. Vicsek,et al. Generic modelling of cooperative growth patterns in bacterial colonies , 1994, Nature.
[27] J. Grotzinger,et al. Herringbone Calcite: Petrography and Environmental Significance , 1996 .
[28] W. Zempolich,et al. Diagenesis of late Proterozoic carbonates; the Beck Spring Dolomite of eastern California , 1988 .
[29] J. Mckenzie,et al. Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas , 1998 .
[30] J. Grotzinger. Facies and Evolution of Precambrian Carbonate Depositional Systems: Emergence of the Modern Platform Archetype , 1989 .
[31] J. Mckenzie,et al. Messinian stromatolite‐thrombolite associations, Santa Pola, SE Spain: an analogue for the Palaeozoic? , 1997 .
[32] Dawn Y. Sumner,et al. Late Archean calcite-microbe interactions; two morphologically distinct microbial communities that affected calcite nucleation differently , 1997 .
[33] W. Broecker,et al. Degree of saturation of CaCO3 in the oceans , 1969 .
[34] A. Knoll,et al. The genesis and time distribution of two distinctive Proterozoic stromatolite microstructures , 1998 .
[35] C. Monty. Chapter 5.1 The Origin and Development of Cryptalgal Fabrics , 1976 .
[36] P. Sadler. Sediment Accumulation Rates and the Completeness of Stratigraphic Sections , 1981, The Journal of Geology.
[37] C. Walcott. Pre-Cambrian Algonkian Algal Flora , 1914 .
[38] Ernst Kalkowsky. Oolith und Stromatolith im norddeutschen Buntsandstein. , 1908 .
[39] P. Garrett. Phanerozoic Stromatolites: Noncompetitive Ecologic Restriction by Grazing and Burrowing Animals , 1970, Science.
[40] J. Donaldson. Chapter 10.2 Paleoecology of Conophyton and Associated Stromatolites in the Precambrian Dismal Lakes and Rae Groups, Canada , 1976 .
[41] J. Kasting,et al. New Constraints on Precambrian Ocean Composition , 1993, The Journal of Geology.
[42] A. M. Thorne,et al. Biostratigraphic significance of stromatolites in upward shallowing sequences of the early proterozoic duck creek dolomite, Western Australia , 1985 .
[43] J. Hayes. Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis , 1983 .
[44] J. Bertrand-Sarfati. Chapter 5.2 An Attempt to Classify Late Precambrian Stromatolite Microstructures , 1976 .
[45] A. B. Ronov. PROBABLE CHANGES IN THE COMPOSITION OF SEA WATER DURING THE COURSE OF GEOLOGICAL TIME1 , 1968 .
[46] B. Constantz. The Primary Surface Area of Corals and Variations in Their Susceptibility to Diagenesis , 1986 .
[47] S M Awramik,et al. Precambrian Columnar Stromatolite Diversity: Reflection of Metazoan Appearance , 1971, Science.
[48] D. Banerjee,et al. Morphometric analysis of Proterozoic stromatolites from India — preliminary report on testing of a new technique , 1986 .
[49] S. Golubić. Modern Stromatolites: A Review , 1991 .
[50] D. Canfield,et al. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat , 1993, Geochimica et cosmochimica acta.
[51] T. D. Brock,et al. Structure, Growth, and Decomposition of Laminated Algal-Bacterial Mats in Alkaline Hot Springs , 1977, Applied and environmental microbiology.
[52] M. Tucker,et al. Radiaxial fibrous calcite: a replacement after acicular carbonate , 1973 .
[53] D. Canfield,et al. Carbonate Precipitation and Dissolution: Its Relevance to Fossil Preservation , 1991 .
[54] A. J. Eardley. Sediments of Great Salt Lake , 1966 .
[55] J. Dravis. Hardened Subtidal Stromatolites, Bahamas , 1983, Science.
[56] John P. Grotzinger,et al. An abiotic model for stromatolite morphogenesis , 1996, Nature.
[57] Linda C. Kah,et al. Microbenthic distribution of Proterozoic tidal flats: environmental and taphonomic considerations. , 1996, Geology.
[58] B. Jørgensen,et al. Microelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial mat1 , 1983 .
[59] S. Golubić,et al. COMPARISON OF HOLOCENE AND MID-PRECAMBRIAN ENTOPHYSALIDACEAE (CYANOPHYTA) IN , 1976 .
[60] M. Walter,et al. Links between the rise of the metazoa and the decline of stromatolites , 1985 .
[61] J. Grotzinger,et al. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? , 1996, Geology.
[62] A. Knoll,et al. The early evolution of eukaryotes: a geological perspective. , 1992, Science.
[63] C. Monty. Precambrian background and Phanerozoic history of stromatolitic communities, an overview , 1974 .
[64] A. Barabasi,et al. Fractal Concepts in Surface Growth: Frontmatter , 1995 .
[65] A. Knoll,et al. Anomalous carbonate precipitates: is the Precambrian the key to the Permian? , 1995, Palaios.
[66] Conrad D. Gabelein. Biologic control of stromatolite microstructure: implications for Precambrian time stratigraphy , 1974 .
[67] J. Grotzinger,et al. Evidence for primary aragonite precipitation, lower Proterozoic (1.9 Ga) Rocknest dolomite, Wopmay orogen, northwest Canada , 1983 .
[68] A. G. Fischer. FOSSILS, EARLY LIFE, AND ATMOSPHERIC HISTORY. , 1965 .
[69] M. Schidlowski,et al. Early Organic Evolution: Implications for Mineral and Energy Resources , 1992 .
[70] R. J. Horodyski. Stromatolites of the lower Missoula Group (Middle Proterozoic), Belt Supergroup, Glacier National Park, Montana , 1975 .
[71] J. Grotzinger. Evolution of early Proterozoic passive-margin carbonate platform, Rocknest Formation, Wopmay Orogen, Northwest Territories, Canada , 1986 .
[72] S. Awramik. The History and Significance of Stromatolites , 1992 .
[73] A. Knoll,et al. Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. , 1995, Lethaia.
[74] A. Kendall. Radiaxial Fibrous Calcite: A Reappraisal , 1985 .
[75] M. Black. The Algal Sediments of Andros Island, Bahamas , 1932 .
[76] Zhang,et al. Dynamic scaling of growing interfaces. , 1986, Physical review letters.
[77] G. D. Jackson,et al. Proterozoic ministromatolites with radial‐fibrous fabric , 1987 .
[78] G. Vojta,et al. Fractal Concepts in Surface Growth , 1996 .
[79] B. W. Logan,et al. Cryptozoon and Associate Stromatolites from the Recent, Shark Bay, Western Australia , 1961, The Journal of Geology.
[80] A. Knoll,et al. Lithification and Fabric Genesis in Precipitated Stromatolites and Associated Peritidal Carbonates, Mesoproterozoic Billyakh Group, Siberia , 2000 .
[81] J. Schieber. The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Mid-Proterozoic basins , 1986 .
[82] H. Chafetz,et al. Bacterially Induced Lithification of Microbial Mats , 1992 .
[83] A. Pentecost,et al. Tussocky Microstructure, a Biological Event in Upper Proterozoic Stromatolites; Comparisons with Modern Freshwater Stromatolite Builders , 1992 .
[84] A. J. Kaufman,et al. Neoproterozoic Fossils in Mesoproterozoic Rocks? Chemostratigraphic Resolution of a Biostratigraphic Conundrum from the North China Platform , 1997 .
[85] S. N. Serebryakov,et al. Riphean and Recent stromatolites: a comparison , 1974 .
[86] Wolfgang E. Krumbein,et al. Stromatolites—the Challenge of a Term in Space and Time , 1983 .
[87] Stanley M. Awramik,et al. Stromatolite morphogenesis—progress and problems , 1979 .
[88] A. Knoll. Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo. , 1994, Proceedings of the National Academy of Sciences of the United States of America.
[89] J. Farmer,et al. Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. , 1996, Ciba Foundation symposium.
[90] J. Grotzinger,et al. Controls on Fabric Development and Morphology of Tufas and Stromatolites, Uppermost Pethel Group (1.8 Ga), Great Slave Lake, Northwest Canada , 2000 .
[91] H. Hofmann,et al. Precambrian Stromatolites: Image Analysis of Lamina Shape , 1982, The Journal of Geology.
[92] A. Kendall. Fascicular-optic Calcite: A Replacement of Bundled Acicular Carbonate Cements , 1977 .
[93] D. D. Des Marais. The biogeochemistry of hypersaline microbial mats. , 1995, Advances in microbial ecology.
[94] B. Jørgensen,et al. Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. , 1988, Limnology and oceanography.
[95] N. James,et al. Thrombolites and stromatolites; two distinct types of microbial structures , 1986 .