Design of a microwave spectrometer for high-precision lamb shift spectroscopy of antihydrogen atoms

[1]  Alan C. Evans,et al.  Observation of the effect of gravity on the motion of antimatter , 2023, Nature.

[2]  F. Schmidt-Kaler,et al.  Production of antihydrogen atoms by 6 keV antiprotons through a positronium cloud , 2023, The European Physical Journal C.

[3]  Z. Burkley,et al.  Measurement of the transition frequency from 2S1/2, F = 0 to 2P1/2, F = 1 states in Muonium , 2022, Nature Communications.

[4]  Z. Burkley,et al.  Intense beam of metastable Muonium , 2020, The European Physical Journal C.

[5]  C. J. Baker,et al.  Investigation of the fine structure of antihydrogen , 2020, Nature.

[6]  E. A. Hessels,et al.  A measurement of the atomic hydrogen Lamb shift and the proton charge radius , 2019, Science.

[7]  Alan C. Evans,et al.  Observation of the 1S–2P Lyman-α transition in antihydrogen , 2018, Nature.

[8]  C. J. Baker,et al.  Characterization of the 1S–2S transition in antihydrogen , 2018, Nature.

[9]  C. J. Baker,et al.  Observation of the hyperfine spectrum of antihydrogen , 2017, Nature.

[10]  C. Regenfus,et al.  Lamb shift measurement of antihydrogen for determining the charge radius of antiproton and a stringent test of CPT symmetry , 2017 .

[11]  C. J. Baker,et al.  Observation of the 1S–2S transition in trapped antihydrogen , 2016, Nature.

[12]  D. Lunney,et al.  The GBAR antimatter gravity experiment , 2015 .

[13]  Alexander Kramida,et al.  A critical compilation of experimental data on spectral lines and energy levels of hydrogen, deuterium, and tritium , 2010 .

[14]  Thomas Graf,et al.  The size of the proton , 2010, Nature.

[15]  C. W. Fabjan,et al.  SEPARATED OSCILLATORY FIELD MEASUREMENT OF THE LAMB SHIFT. , 1971 .