Design of a microwave spectrometer for high-precision lamb shift spectroscopy of antihydrogen atoms
暂无分享,去创建一个
C. Regenfus | Takashi Higuchi | G. Janka | P. Crivelli | P. Blumer | T. A. Tanaka | B. Ohayon | M. Asari | R. Tsukida | T. Higuchi | K. S. Tanaka | N. Kuroda
[1] Alan C. Evans,et al. Observation of the effect of gravity on the motion of antimatter , 2023, Nature.
[2] F. Schmidt-Kaler,et al. Production of antihydrogen atoms by 6 keV antiprotons through a positronium cloud , 2023, The European Physical Journal C.
[3] Z. Burkley,et al. Measurement of the transition frequency from 2S1/2, F = 0 to 2P1/2, F = 1 states in Muonium , 2022, Nature Communications.
[4] Z. Burkley,et al. Intense beam of metastable Muonium , 2020, The European Physical Journal C.
[5] C. J. Baker,et al. Investigation of the fine structure of antihydrogen , 2020, Nature.
[6] E. A. Hessels,et al. A measurement of the atomic hydrogen Lamb shift and the proton charge radius , 2019, Science.
[7] Alan C. Evans,et al. Observation of the 1S–2P Lyman-α transition in antihydrogen , 2018, Nature.
[8] C. J. Baker,et al. Characterization of the 1S–2S transition in antihydrogen , 2018, Nature.
[9] C. J. Baker,et al. Observation of the hyperfine spectrum of antihydrogen , 2017, Nature.
[10] C. Regenfus,et al. Lamb shift measurement of antihydrogen for determining the charge radius of antiproton and a stringent test of CPT symmetry , 2017 .
[11] C. J. Baker,et al. Observation of the 1S–2S transition in trapped antihydrogen , 2016, Nature.
[12] D. Lunney,et al. The GBAR antimatter gravity experiment , 2015 .
[13] Alexander Kramida,et al. A critical compilation of experimental data on spectral lines and energy levels of hydrogen, deuterium, and tritium , 2010 .
[14] Thomas Graf,et al. The size of the proton , 2010, Nature.
[15] C. W. Fabjan,et al. SEPARATED OSCILLATORY FIELD MEASUREMENT OF THE LAMB SHIFT. , 1971 .