Formation of nanoporous titanium oxide films on silicon substrates using an anodization process

The formation of nanoporous TiO2 by anodization of titanium films deposited on silicon substrates was investigated. Films with homogeneously distributed pores having an average pore diameter of 25 nm and interpore distance of 40 nm were obtained by anodization in an aqueous HF electrolyte solution after a comprehensive investigation of the anodization conditions. It was shown that the magnitude of the anodization current and voltage have significant roles in the formation of different surface morphologies with different pore dimensions, ranging from big pits to nanosize porous structures. The study showed that the nanoporous structure is formed only in 0.5–1.0 wt% HF solution while keeping the anodizing potential at 3–5 V. The porous TiO2 films were characterized using scanning electron microscopy and x-ray diffraction techniques, and their formation conditions are discussed. In addition, a growth mechanism model is presented to explain the formation of different surface structures.

[1]  Sachiko Ono,et al.  Self‐Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution , 1997 .

[2]  David T. Crouse,et al.  Self-ordered pore structure of anodized aluminum on silicon and pattern transfer , 2000 .

[3]  Dongsheng Xu,et al.  ELECTROCHEMICALLY INDUCED SOL-GEL PREPARATION OF SINGLE-CRYSTALLINE TIO2NANOWIRES , 2002 .

[4]  B. Su,et al.  Titanium oxide nanotubes, nanofibers and nanowires , 2004 .

[5]  Yu-Ming Lin,et al.  Formation of Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass , 2003 .

[6]  F. Lévy,et al.  Mechanical and electrical properties of fcc TiO1+x thin films prepared by r.f. reactive sputtering , 1998 .

[7]  F. Keller,et al.  Structural Features of Oxide Coatings on Aluminum , 1953 .

[8]  Xingdong Zhang,et al.  Preparation of bioactive titanium metal via anodic oxidation treatment. , 2004, Biomaterials.

[9]  V. Parkhutik,et al.  Theoretical modelling of porous oxide growth on aluminium , 1992 .

[10]  T. Tamamura,et al.  Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid , 2001 .

[11]  T. Tamamura,et al.  Photonic Band Gap in Anodic Porous Alumina with Extremely High Aspect Ratio Formed in Phosphoric Acid Solution , 2000 .

[12]  Patrik Schmuki,et al.  Self-Organized Porous Titanium Oxide Prepared in H 2 SO 4 / HF Electrolytes , 2003 .

[13]  Si-hoon Lee,et al.  Fabrication of TiO2 Tubules by Template Synthesis and Hydrolysis with Water Vapor , 2004 .

[14]  K. Wada,et al.  Formation and Microstructures of Anodic Alumina Films from Aluminum Sputtered on Glass Substrate , 2002 .

[15]  U. Gösele,et al.  Anodization of nanoimprinted titanium: a comparison with formation of porous alumina , 2004 .

[16]  Marc Aucouturier,et al.  Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach , 1999 .

[17]  Toshiaki Tamamura,et al.  Highly ordered nanochannel-array architecture in anodic alumina , 1997 .

[18]  Eugeniu Balaur,et al.  Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes , 2005 .

[19]  Jan M. Macak,et al.  Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes , 2005 .

[20]  Craig A. Grimes,et al.  Fabrication of tapered, conical-shaped titania nanotubes , 2003 .

[21]  J. Siejka,et al.  An O18 Study of Field‐Assisted Pore Formation in Compact Anodic Oxide Films on Aluminum , 1977 .

[22]  Shaomin Liu,et al.  SYNTHESIS OF SINGLE-CRYSTALLINE TIO2 NANOTUBES , 2002 .

[23]  Takayuki Takahagi,et al.  Fabrication of nanohole array on Si using self-organized porous alumina mask , 2001 .

[24]  Toshiaki Tamamura,et al.  Conditions for Fabrication of Ideally Ordered Anodic Porous Alumina Using Pretextured Al , 2001 .

[25]  Shahed U. M. Khan,et al.  Photoresponse of n-TiO2 thin film and nanowire electrodes , 2003 .

[26]  Shoso Shingubara,et al.  Fabrication of Nanomaterials Using Porous Alumina Templates , 2003 .

[27]  G. Thompson,et al.  Nucleation and growth of porous anodic films on aluminium , 1978, Nature.

[28]  Marc Aucouturier,et al.  Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy , 1999 .

[29]  H. Imai,et al.  Direct preparation of anatase TiO2 nanotubes in porous alumina membranes , 1999 .

[30]  Yong Lei,et al.  Preparation and photoluminescence of highly ordered TiO2 nanowire arrays , 2001 .

[31]  Longtu Li,et al.  Fabrication of titanium oxide nanotube arrays by anodic oxidation , 2005 .

[32]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[33]  P. Hoyer,et al.  Formation of a Titanium Dioxide Nanotube Array , 1996 .

[34]  Martin Moskovits,et al.  Highly-ordered carbon nanotube arrays for electronics applications , 1999 .

[35]  T. Mallouk,et al.  Penetrating the oxide barrier in situ and separating freestanding porous anodic alumina films in one step. , 2005, Nano letters.

[36]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[37]  P. Searson,et al.  Fabrication of nanoporous gold nanowires , 2002 .

[38]  R. C. Birtcher,et al.  Self-organized porous-alumina implantation masks for generating nanoscale arrays , 2003 .

[39]  D. K. Yi,et al.  Spin-on-Based Fabrication of Titania Nanowires Using a Sol−Gel Process , 2002 .

[40]  P. Hoyer Semiconductor nanotube formation by a two‐step template process , 1996 .

[41]  M. Niwano,et al.  Investigation of formation processes of an anodic porous alumina film on a silicon substrate , 2004 .

[42]  N. Mott,et al.  A mechanism for the formation of porous anodic oxide films on aluminium , 1959 .