Incremental acquisition and visualization of three-dimensional ultrasound images

This dissertation describes work on 3D visualization of ultrasound echography data. The future goal of this research is the in-place volume visualization of medical 3D ultrasound images acquired and visualized real-time. For example, using such a system, a doctor wearing special glasses would see a volume-visualized image of the fetus in the mother's abdomen. This dissertation discusses two feasibility study systems that have been developed in order to push the state of the art toward this goal. The work on the first system, the static viewpoint 3D echography system, shows that it is possible with current graphics hardware to visualize, at an interactive rate, a stationary object from a series of 2D echography image slices hand-guided with 3 degrees-of-freedom. This work includes development of an incremental volume reconstruction algorithm for irregularly spaced samples and development of an efficient volume visualization algorithm based on a spatial bounding technique. The work on the second system, the dynamic viewpoint 3D echography system, shows the feasibility of a system that uses a video see-through head-mounted display to realize in-place visualization of ultrasound echography datasets.