Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities

We describe a method to project photonic two-qubit states onto the symmetric and antisymmetric subspaces of their Hilbert space. This device utilizes an ancillary coherent state, together with a weak cross-Kerr nonlinearity, generated, for example, by electromagnetically induced transparency. The symmetry analyzer is nondestructive, and works for small values of the cross-Kerr coupling. Furthermore, this device can be used to construct a nondestructive Bell-state detector.

[1]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[2]  T. Spiller,et al.  High-efficiency quantum-nondemolition single-photon-number-resolving detector , 2003, quant-ph/0310066.

[3]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[4]  R. G. Beausoleil,et al.  Applications of coherent population transfer to quantum information processing , 2003, quant-ph/0302109.

[5]  D. Leung Quantum computation by measurements , 2003, quant-ph/0310189.

[6]  S. Harris,et al.  Low-light-level nonlinear optics with slow light , 2003, quant-ph/0309084.

[7]  Michael A. Nielsen,et al.  Quantum computation by measurement and quantum memory , 2003 .

[8]  P. Kok,et al.  Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements , 2002, quant-ph/0202046.

[9]  Christopher C. Gerry,et al.  Generation of maximally entangled photonic states with a quantum-optical Fredkin gate , 2001 .

[10]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[11]  M S Shahriar,et al.  Raman-excited spin coherences in nitrogen-vacancy color centers in diamond. , 2001, Optics letters.

[12]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[13]  M. Shahriar,et al.  Solid State Quantum Computing Using Spectral Holes , 2000, quant-ph/0007074.

[14]  Giacomo Mauro D'Ariano,et al.  Quantum Computations with Polarized Photons , 2000 .

[15]  M. Plenio,et al.  Optical Bell Measurement by Fock Filtering , 1999, quant-ph/9911036.

[16]  H. Kimble,et al.  Single atom in free space as a quantum aperture , 1999, quant-ph/9908082.

[17]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[18]  L. Hau,et al.  Nonlinear Optics at Low Light Levels , 1999 .

[19]  R. Boyd Order-of-magnitude estimates of the nonlinear optical susceptibility , 1999 .

[20]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[21]  N. Yoran,et al.  Methods for Reliable Teleportation , 1998, quant-ph/9808040.

[22]  Philippe Grangier,et al.  Quantum non-demolition measurements in optics , 1998, Nature.

[23]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[24]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[25]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[26]  Mann,et al.  Measurement of the Bell operator and quantum teleportation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[27]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[28]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[29]  Yamamoto,et al.  Quantum nondemolition measurement of the photon number via the optical Kerr effect. , 1985, Physical review. A, General physics.

[30]  Gerard J. Milburn,et al.  State reduction in quantum-counting quantum nondemolition measurements , 1984 .

[31]  M. Duguay,et al.  AN ULTRAFAST LIGHT GATE , 1969 .