Lattice Boltzmann model for high-order nonlinear partial differential equations.

In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

[1]  B. Boghosian,et al.  Two complementary lattice-Boltzmann-based analyses for nonlinear systems , 2017 .

[2]  Hong Liang,et al.  Finite-difference lattice Boltzmann model for nonlinear convection-diffusion equations , 2017, Appl. Math. Comput..

[3]  Weifeng Zhao,et al.  Single-node second-order boundary schemes for the lattice Boltzmann method , 2017, J. Comput. Phys..

[4]  Zhenhua Chai,et al.  A Multiple-Relaxation-Time Lattice Boltzmann Model for General Nonlinear Anisotropic Convection–Diffusion Equations , 2016, J. Sci. Comput..

[5]  Z. Chai,et al.  A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media , 2016 .

[6]  Nikolai A. Kudryashov,et al.  On solutions of generalized modified Korteweg-de Vries equation of the fifth order with dissipation , 2016, Appl. Math. Comput..

[7]  Juntao Huang,et al.  Boundary conditions of the lattice Boltzmann method for convection-diffusion equations , 2015, J. Comput. Phys..

[8]  Yangyang He,et al.  Lattice Boltzmann methods for multiphase flow and phase-change heat transfer , 2015, 1508.00940.

[9]  Bruce D. Jones,et al.  Multiphase lattice Boltzmann simulations for porous media applications , 2014, Computational Geosciences.

[10]  Zhenhua Chai,et al.  A novel lattice Boltzmann model for the coupled viscous Burgers' equations , 2015, Appl. Math. Comput..

[11]  W. Tao,et al.  A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications , 2014 .

[12]  Renwei Mei,et al.  Multiple-relaxation-time lattice Boltzmann model for the axisymmetric convection diffusion equation , 2013 .

[13]  Z. Chai,et al.  Lattice Boltzmann model for the convection-diffusion equation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Lina Ye,et al.  Numerical Method Based on the Lattice Boltzmann Model for the Kuramoto-Sivashinsky Equation , 2011, J. Sci. Comput..

[15]  Bastien Chopard,et al.  A lattice Boltzmann model for coupled diffusion , 2010, J. Comput. Phys..

[16]  Hiroaki Yoshida,et al.  Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation , 2010, J. Comput. Phys..

[17]  Guangwu Yan,et al.  Lattice Boltzmann model for the complex Ginzburg-Landau equation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Changfeng Ma,et al.  The lattice Boltzmann model for the second-order Benjamin–Ono equations , 2010 .

[19]  Chen Lin-Jie,et al.  A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations , 2010 .

[20]  P. Asinari,et al.  Factorization symmetry in the lattice Boltzmann method , 2009, 0911.5529.

[21]  Guangwu Yan,et al.  A lattice Boltzmann model for the Korteweg-de Vries equation with two conservation laws , 2009, Comput. Phys. Commun..

[22]  Baochang Shi,et al.  Lattice Boltzmann model for the one-dimensional nonlinear Dirac equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Changfeng Ma,et al.  A higher order lattice BGK model for simulating some nonlinear partial differential equations , 2009 .

[24]  Siraj-ul-Islam,et al.  A mesh-free numerical method for solution of the family of Kuramoto-Sivashinsky equations , 2009, Appl. Math. Comput..

[25]  Bastien Chopard,et al.  The lattice Boltzmann advection-diffusion model revisited , 2009 .

[26]  Changfeng Ma,et al.  Lattice Boltzmann method for the generalized Kuramoto–Sivashinsky equation , 2009 .

[27]  Baochang Shi,et al.  Lattice Boltzmann model for nonlinear convection-diffusion equations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for High-Order Time-Dependent Partial Differential Equations , 2009 .

[29]  Guangwu Yan,et al.  A higher-order moment method of the lattice Boltzmann model for the Korteweg-de Vries equation , 2009, Math. Comput. Simul..

[30]  Jaime Peraire,et al.  A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations , 2008, J. Comput. Phys..

[31]  N. Pan,et al.  Predictions of effective physical properties of complex multiphase materials , 2008 .

[32]  Zhenhua Chai,et al.  A novel lattice Boltzmann model for the Poisson equation , 2008 .

[33]  Guangwu Yan,et al.  Lattice Boltzmann method for one and two-dimensional Burgers equation ☆ , 2008 .

[34]  Frank T.-C. Tsai,et al.  Lattice Boltzmann method with two relaxation times for advection–diffusion equation: Third order analysis and stability analysis , 2008 .

[35]  S Succi,et al.  Quantum lattice Boltzmann simulation of expanding Bose-Einstein condensates in random potentials. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Zhenhua Chai,et al.  A unified lattice Boltzmann model for some nonlinear partial differential equations , 2008 .

[37]  Bin Deng,et al.  A new scheme for source term in LBGK model for convection-diffusion equation , 2008, Comput. Math. Appl..

[38]  Sauro Succi,et al.  The Quantum Lattice Boltzmann Equation: Recent Developments † , 2008 .

[39]  Mauricio Sepúlveda,et al.  The Korteweg-de Vries-Kawahara equation in a bounded domain and some numerical results , 2007, Appl. Math. Comput..

[40]  S Succi,et al.  Numerical validation of the quantum lattice Boltzmann scheme in two and three dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Baochang Shi,et al.  Lattice Boltzmann Simulation of Some Nonlinear Complex Equations , 2007, International Conference on Computational Science.

[42]  Linda Vahala,et al.  Entropic lattice Boltzmann representations required to recover Navier-Stokes flows. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Abdul-Majid Wazwaz,et al.  New solitary wave solutions to the modified Kawahara equation , 2007 .

[44]  Abdul-Majid Wazwaz,et al.  New solitary wave solutions to the Kuramoto-Sivashinsky and the Kawahara equations , 2006, Appl. Math. Comput..

[45]  I. Karlin,et al.  Entropy and Galilean invariance of lattice Boltzmann theories. , 2006, Physical review letters.

[46]  Xiaomei Yu,et al.  A lattice Boltzmann model for reaction dynamical systems with time delay , 2006, Appl. Math. Comput..

[47]  Ping Dong,et al.  Lattice Boltzmann schemes for the nonlinear Schrödinger equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  I. Karlin,et al.  Entropic lattice Boltzmann models for hydrodynamics in three dimensions. , 2006, Physical review letters.

[49]  Shi Bao-Chang,et al.  A lattice Bhatnagar-Gross-Krook model for a class of the generalized Burgers equations * , 2006 .

[50]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations , 2006 .

[51]  G. Vahala,et al.  Quantum Lattice Representations for Vector Solitons in External Potentials , 2006 .

[52]  X. Yuan,et al.  Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation , 2006, Journal of Fluid Mechanics.

[53]  Abdul-Majid Wazwaz,et al.  The tanh method for compact and noncompact solutions for variants of the KdV-Burger and the K(n,n)-Burger equations , 2006 .

[54]  R. V. D. van der Sman,et al.  Galilean invariant lattice Boltzmann scheme for natural convection on square and rectangular lattices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  I. Ginzburg Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation , 2005 .

[56]  Sauro Succi,et al.  A multi-relaxation lattice kinetic method for passive scalar diffusion , 2005 .

[57]  郑楚光,et al.  Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method , 2005 .

[58]  G. Vahala,et al.  Quantum lattice gas representation of some classical solitons , 2003 .

[59]  H. C. Ottinger,et al.  Minimal entropic kinetic models for hydrodynamics , 2002, cond-mat/0205510.

[60]  Jeffrey Yepez,et al.  An efficient and accurate quantum lattice-gas model for the many-body Schrödinger wave equation , 2002 .

[61]  B. Shi,et al.  Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method , 2002 .

[62]  J. Yepez,et al.  Quantum Lattice-Gas Model for the Burgers Equation , 2002 .

[63]  John W. Crawford,et al.  A lattice BGK model for advection and anisotropic dispersion equation , 2002 .

[64]  P. Coveney,et al.  Entropic lattice Boltzmann methods , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[65]  Zhang Jian-wen Exact Solutions of the Generalized Kuramoto-Sivashinsky type Equations with the dispersive Effects , 2001 .

[66]  Byron Goldstein,et al.  Lattice Boltzmann Simulation of Diffusion-Convection Systems with Surface Chemical Reaction , 2000 .

[67]  Peter M. A. Sloot,et al.  Lattice dependence of reaction-diffusion in lattice Boltzmann modeling , 2000 .

[68]  P. Lallemand,et al.  Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  R. Sman,et al.  Convection-Diffusion Lattice Boltzmann Scheme for Irregular Lattices , 2000 .

[70]  Z. L. Guo,et al.  Fully Lagrangian and Lattice Boltzmann Methods for the Advection-Diffusion Equation , 1999, J. Sci. Comput..

[71]  I. Karlin,et al.  Perfect entropy functions of the Lattice Boltzmann method , 1999 .

[72]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[73]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[74]  B. Boghosian,et al.  Quantum Lattice-Gas Models for the Many-Body Schrödinger Equation , 1997, quant-ph/9701016.

[75]  Yeomans,et al.  Lattice Boltzmann simulations of liquid-gas and binary fluid systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[76]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[77]  Succi Numerical solution of the Schrödinger equation using discrete kinetic theory. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[78]  Dieter Wolf-Gladrow,et al.  A lattice Boltzmann equation for diffusion , 1995 .

[79]  Sauro Succi,et al.  Recent Advances in Lattice Boltzmann Computing , 1995 .

[80]  M. A. López-Marcos Numerical analysis of pseudospectral methods for the Kuramoto-Sivashinsky equation , 1994 .

[81]  B. Shizgal,et al.  Generalized Lattice-Boltzmann Equations , 1994 .

[82]  Sauro Succi,et al.  Lattice Boltzmann equation for quantum mechanics , 1993, comp-gas/9304002.

[83]  Shiyi Chen,et al.  Lattice Boltzmann computations for reaction‐diffusion equations , 1993 .

[84]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[85]  Matthaeus,et al.  Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[86]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[87]  Nikolai A. Kudryashov,et al.  Exact solutions of the generalized Kuramoto-Sivashinsky equation , 1990 .

[88]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .