Development and application of hyperheuristics to personnel scheduling

This thesis is concerned with the investigation of hyperheuristic techniques. Hyperheuristics are heuristics which choose heuristics in order to solve a given optimisation problem. In this thesis we investigate and develop a number of hyperheuristic techniques including a hyperheuristic which uses a choice function in order to select which low-level heuristic to apply at each decision point. We demonstrate the effectiveness of our hyperheuristics by means of three personnel scheduling problems taken from the real world. For each application problem, we apply our hyperheuristics to several instances and compare our results with those of other heuristic methods. For all problems, the choice function hyperheuristic appears to be superior to other hyperheuristics considered. It also produces results competitive with those obtained using other sophisticated means. It is hoped that - hyperheuristics can produce solutions of good quality, often competitive with those of modern heuristic techniques, within a short amount of implementation and development time, using only simple and easy-to-implement low-level heuristics. - hyperheuristics are easily re-usable methods as opposed to some metaheuristic methods which tend to use extensive problem-specific information in order to arrive at good solutions. These two latter points constitute the main contributions of this thesis.

[1]  Derek Smith,et al.  Bin Packing with Adaptive Search , 1985, ICGA.

[2]  Rangarajan Narasimhan,et al.  An Algorithm For Multiple Shift Scheduling of Hierarchical Workforce On Four-Day Or Three-Day Workweeks , 2000 .

[3]  Graham Kendall,et al.  An adaptive Length chromosome Hyper-Heuristic Genetic Algorithm for a Trainer Scheduling Problem , 2002, SEAL.

[4]  D. Fogel ASYMPTOTIC CONVERGENCE PROPERTIES OF GENETIC ALGORITHMS AND EVOLUTIONARY PROGRAMMING: ANALYSIS AND EXPERIMENTS , 1994 .

[5]  Gillian Mould Case Study of Manpower Planning for Clerical Operations , 1996 .

[6]  Stephen F. Smith,et al.  Flexible Learning of Problem Solving Heuristics Through Adaptive Search , 1983, IJCAI.

[7]  Rangarajan Narasimhan An algorithm for single shift scheduling of hierarchical workforce , 1997 .

[8]  Christos Koulamas,et al.  A survey of simulated annealing applications to operations research problems , 1994 .

[9]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[10]  William Swart,et al.  An Integrated Labor-Management System for Taco Bell , 1998, Interfaces.

[11]  Gary M. Thompson A simulated-annealing heuristic for shift scheduling using non-continuously available employees , 1996, Comput. Oper. Res..

[12]  Lene Tolstrup Sørensen,et al.  Soft Methods in Primary Schools: Focusing on IT Strategies , 2002 .

[13]  Hiroaki Kitano,et al.  Designing Neural Networks Using Genetic Algorithms with Graph Generation System , 1990, Complex Syst..

[14]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[15]  Jonas Mockus,et al.  Bayesian Approach to Global Optimization , 1989 .

[16]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[17]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[18]  J. L. Maryak,et al.  Bayesian Heuristic Approach to Discrete and Global Optimization , 1999, Technometrics.

[19]  Jan Karel Lenstra,et al.  A local search template , 1998, Comput. Oper. Res..

[20]  Olivier C. Martin,et al.  Combining simulated annealing with local search heuristics , 1993, Ann. Oper. Res..

[21]  Michel Gendreau,et al.  A Constraint Programming Framework for Local Search Methods , 1999, J. Heuristics.

[22]  D. Mitra,et al.  Convergence and finite-time behavior of simulated annealing , 1985, 1985 24th IEEE Conference on Decision and Control.

[23]  T. Liang,et al.  Improving the utilization of training resources through optimal personnel assignment in the U.S. Navy , 1988 .

[24]  Una-May O'Reilly,et al.  Genetic Programming II: Automatic Discovery of Reusable Programs. , 1994, Artificial Life.

[25]  Peter Ross,et al.  A Promising Hybrid GA/Heuristic Approach for Open-Shop Scheduling Problems , 1994, ECAI.

[26]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[27]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[28]  Peter Ross,et al.  Hyper-heuristics: Learning To Combine Simple Heuristics In Bin-packing Problems , 2002, GECCO.

[29]  Colin R. Reeves,et al.  Genetic Algorithms—Principles and Perspectives , 2002, Operations Research/Computer Science Interfaces Series.

[30]  Peter Ross,et al.  A Promising Genetic Algorithm Approach to Job-Shop SchedulingRe-Schedulingand Open-Shop Scheduling Problems , 1993, ICGA.

[31]  M. Pirlot General local search methods , 1996 .

[32]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[33]  Peter O'Grady,et al.  A general search sequencing rule for job shop sequencing , 1985 .

[34]  Brigitte Jaumard,et al.  A generalized linear programming model for nurse scheduling , 1996, Eur. J. Oper. Res..

[35]  Peter Greistorfer,et al.  A Tabu Scatter Search Metaheuristic for the Arc Routing Problem , 2002 .

[36]  Jeremy F Shapiro Mathematical Programming Methods for Logistics Planning. , 1981 .

[37]  William B. Langdon,et al.  Scheduling Maintenance of Electrical Power Transmission Networks Using Genetic Programming , 1996 .

[38]  David B. Fogel,et al.  Evolutionary Computation: The Fossil Record , 1998 .

[39]  Rgj Mills,et al.  Scheduling of casino security officers , 1992 .

[40]  J. Mockus,et al.  The Bayesian approach to global optimization , 1989 .

[41]  Alexander Nareyek,et al.  An Empirical Analysis of Weight-Adaptation Strategies for Neighborhoods of Heuristics , 2001 .

[42]  Jonas Mockus,et al.  A Set of Examples of Global and Discrete Optimization , 2000 .

[43]  Peter Ross,et al.  Scheduling chicken catching ‐ An investigationinto the success of a genetic algorithm on areal‐world scheduling problem , 1999, Ann. Oper. Res..

[44]  Peter Ross,et al.  A Heuristic Combination Method for Solving Job-Shop Scheduling Problems , 1998, PPSN.

[45]  Edward W. Felten,et al.  Large-Step Markov Chains for the Traveling Salesman Problem , 1991, Complex Syst..

[46]  Michail G. Lagoudakis,et al.  Algorithm Selection using Reinforcement Learning , 2000, ICML.

[47]  David Mahalel,et al.  Heuristic approach to task scheduling: `weight' and `improve' algorithms , 1993 .

[48]  Harvey H. Millar,et al.  Cyclic and non-cyclic scheduling of 12 h shift nurses by network programming , 1998 .

[49]  Jim Smith,et al.  Co-evolving Memetic Algorithms: Initial Investigations , 2002, PPSN.

[50]  Victor J. Rayward-Smith,et al.  Modern Heuristic Search Methods , 1996 .

[51]  Gilbert Laporte,et al.  Metaheuristics: A bibliography , 1996, Ann. Oper. Res..

[52]  Vincent A. Mabert,et al.  A Case Study of Encoder Shift Scheduling under Uncertainty , 1979 .

[53]  Celso C. Ribeiro,et al.  A Hybrid GRASP with Perturbations for the Steiner Problem in Graphs , 2002, INFORMS J. Comput..

[54]  Jonas Mockus,et al.  Application of Bayesian approach to numerical methods of global and stochastic optimization , 1994, J. Glob. Optim..

[55]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[56]  Stewart W. Wilson Classifier Fitness Based on Accuracy , 1995, Evolutionary Computation.

[57]  H. Terashima-Marín,et al.  Evolution of Constraint Satisfaction strategies in examination timetabling , 1999 .

[58]  Vlatko Čerić,et al.  Rational Analysis for a Problematic World: Problem Structuring Methods for Complexity, Uncertainty and Conflict , 1991 .

[59]  F. Glover AN ALL-INTEGER INTEGER PROGRAMMING ALGORITHM , 1963 .

[60]  Jun Gu,et al.  Efficient Local Search With Search Space Smoothing: A Case Study of the Traveling Salesman Problem (TSP) , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[61]  Edward P. K. Tsang,et al.  Fast local search and guided local search and their application to British Telecom's workforce scheduling problem , 1997, Oper. Res. Lett..

[62]  F. Robert Jacobs,et al.  Tour Scheduling and Task Assignment of a Heterogeneous Work Force: A Heuristic Approach , 1991 .

[63]  David Lesaint,et al.  Dynamic Workforce Scheduling for British Telecommunications plc , 2000, Interfaces.

[64]  Gary M. Thompson Improved implicit optimal modeling of the labor shift scheduling problem , 1995 .

[65]  V. Fabian Simulated annealing simulated , 1997 .

[66]  Robert H. Storer,et al.  Problem and Heuristic Space Search Strategies for Job Shop Scheduling , 1995, INFORMS J. Comput..

[67]  Edward P. K. Tsang,et al.  Guided local search and its application to the traveling salesman problem , 1999, Eur. J. Oper. Res..

[68]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[69]  Monte Zweben,et al.  Scheduling and rescheduling with iterative repair , 1993, IEEE Trans. Syst. Man Cybern..

[70]  James M. Tien,et al.  On Manpower Scheduling Algorithms , 1982 .

[71]  Andreas T. Ernst,et al.  Staff scheduling and rostering: A review of applications, methods and models , 2004, Eur. J. Oper. Res..

[72]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[73]  G. Syswerda,et al.  Schedule Optimization Using Genetic Algorithms , 1991 .

[74]  Sanja Petrovic,et al.  Case-Based Reasoning as a Heuristic Selector in a Hyper-Heuristic for Course Timetabling Problems , 2002 .

[75]  Kathryn A. Dowsland,et al.  A robust simulated annealing based examination timetabling system , 1998, Comput. Oper. Res..

[76]  John R. Koza,et al.  Genetic programming II (videotape): the next generation , 1994 .

[77]  I. P. Norenkov,et al.  Solving Scheduling Problems via Evolutionary Methods for Rule Sequence Optimization , 1998 .

[78]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[79]  Lawrence Davis,et al.  Hybridizing the Genetic Algorithm and the K Nearest Neighbors Classification Algorithm , 1991, ICGA.

[80]  Thomas Stützle,et al.  Local search algorithms for combinatorial problems - analysis, improvements, and new applications , 1999, DISKI.

[81]  Godwin C. Ovuworie,et al.  Mathematical Programming: Structures and Algorithms , 1979 .

[82]  S. S. Panwalkar,et al.  A Survey of Scheduling Rules , 1977, Oper. Res..

[83]  Hoong Chuin Lau,et al.  On the complexity of manpower shift scheduling , 1996, Comput. Oper. Res..

[84]  Jonathan Gratch,et al.  Adaptive Problem-solving for Large-scale Scheduling Problems: A Case Study , 1996, J. Artif. Intell. Res..

[85]  Gary M. Thompson,et al.  Labor scheduling using NPV estimates of the marginal benefit of additional labor capacity , 1995 .

[86]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[87]  Mauricio G. C. Resende,et al.  Grasp: An Annotated Bibliography , 2002 .

[88]  Steve A. Chien,et al.  Using Iterative Repair to Automate Planning and Scheduling of Shuttle Payload Operations , 1999, AAAI/IAAI.

[89]  Philip E. Taylor,et al.  A Break from Tradition for the San Francisco Police: Patrol Officer Scheduling Using an Optimization-Based Decision Support System , 1989 .

[90]  David M. Panton,et al.  Personnel shift assignment: Existence conditions and network models , 1994, Networks.

[91]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[92]  Robert H. Storer,et al.  Problem space local search for number partitioning , 1996, Ann. Oper. Res..

[93]  Gary M. Thompson Assigning Telephone Operators to Shifts at New Brunswick Telephone Company , 1997 .

[94]  Rama Akkiraju,et al.  Asynchronous Teams , 2003, Handbook of Metaheuristics.

[95]  Srimathy Gopalakrishnan,et al.  A Decision Support System for Scheduling Personnel in a Newspaper Publishing Environment , 1993 .

[96]  Hamilton Emmons,et al.  MULTIPLE-SHIFT WORKFORCE SCHEDULING UNDER THE 3-4 COMPRESSED WORKWEEK WITH A HIERARCHICAL WORKFORCE , 1993 .

[97]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[98]  Andrew J. Mason,et al.  Integrated Simulation, Heuristic and Optimisation Approaches to Staff Scheduling , 1998, Oper. Res..

[99]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[100]  V. Jorge Leon,et al.  Strength and adaptability of problem-space based neighborhoods for resource-constrained scheduling , 1995 .

[101]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[102]  S.,et al.  An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .

[103]  Kaisa Miettinen,et al.  Some Methods for Nonlinear Multi-objective Optimization , 2001, EMO.

[104]  W. Punch,et al.  A Genetic Algorithm to Generate a Pro-Active Scheduler for a Printed Circuit Board Assembly , 1996 .

[105]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[106]  Sheldon Howard Jacobson,et al.  The Theory and Practice of Simulated Annealing , 2003, Handbook of Metaheuristics.

[107]  Peter Ross,et al.  Solving a Real-World Problem Using an Evolving Heuristically Driven Schedule Builder , 1998, Evolutionary Computation.

[108]  Rudy Hung,et al.  Scheduling a workforce under annualized hours , 1999 .

[109]  Robert R. Love,et al.  Management Science Improves Fast-Food Operations , 1990 .

[110]  Fred W. Glover,et al.  A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.

[111]  Sameer Kumar,et al.  Efficient workforce scheduling for a serial processing environment: a case study at Minneapolis Star Tribune , 1999 .

[112]  Michael Pidd,et al.  Sales force deployment models , 1990 .

[113]  Pierre Hansen,et al.  Variable Neighbourhood Search , 2003 .

[114]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[115]  Colin Reeves,et al.  Hybrid genetic algorithms for bin-packing and related problems , 1996, Ann. Oper. Res..

[116]  Sol Schindler,et al.  Station Staffing at Pan American World Airways , 1993 .

[117]  Linas Mockus,et al.  Bayesian approach adapting stochastic and heuristic methods of global and discrete optimization , 1994 .

[118]  Larry W. Jacobs,et al.  Overlapping start-time bands in implicit tour scheduling , 1996 .

[119]  Andrea Schaerf,et al.  Local search techniques for large high school timetabling problems , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[120]  Rafael Martí,et al.  GRASP and Path Relinking for 2-Layer Straight Line Crossing Minimization , 1999, INFORMS J. Comput..

[121]  R. Storer,et al.  New search spaces for sequencing problems with application to job shop scheduling , 1992 .

[122]  Spyros Makridakis,et al.  Forecasting Methods for Management , 1989 .

[123]  C. K. Y. Lin The development of a workforce management system for a hotline serviceOP , 1999 .

[124]  William B. Langdon,et al.  Scheduling Planned Maintenance of the National Grid , 1995, Evolutionary Computing, AISB Workshop.

[125]  P. Nordin Genetic Programming III - Darwinian Invention and Problem Solving , 1999 .

[126]  F. Glover Scatter search and star-paths: beyond the genetic metaphor , 1995 .

[127]  David B. Fogel,et al.  CONTINUOUS EVOLUTIONARY PROGRAMMING: ANALYSIS AND EXPERIMENTS , 1995 .

[128]  Si-Eng Ling,et al.  Integrating Genetic Algorithms with a Prolog Assignment Program as a Hybrid Solution for a Polytechnic Timetable Problem , 1992, Parallel Problem Solving from Nature.

[129]  J. Schreuder Assigning magistrates to sessions of the Amsterdam Crimal Court , 2000 .

[130]  T. Stützle,et al.  MAX-MIN Ant System and local search for the traveling salesman problem , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[131]  Jonathan F. Bard,et al.  Solving large-scale tour scheduling problems , 1994 .

[132]  Benar Fux Svaiter,et al.  Descent methods with linesearch in the presence of perturbations , 1997 .

[133]  Alexander Nareyek,et al.  Choosing search heuristics by non-stationary reinforcement learning , 2004 .

[134]  Eugene Fink,et al.  How to Solve It Automatically: Selection Among Problem Solving Methods , 1998, AIPS.

[135]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[136]  Bruce Faaland,et al.  Cost-Based Scheduling of Workers and Equipment in a Fabrication and Assembly Shop , 1993, Oper. Res..

[137]  J. S. F. Barker,et al.  Simulation of Genetic Systems by Automatic Digital Computers , 1958 .

[138]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .