Simulation of Implied Volatility Surfaces via Tangent Lévy Models
暂无分享,去创建一个
Yi Ma | René Carmona | Sergey Nadtochiy | R. Carmona | S. Nadtochiy | Yi Ma
[1] René Carmona,et al. Local volatility dynamic models , 2009, Finance Stochastics.
[2] Tangent models as a mathematical framework for dynamic calibration , 2011 .
[3] LOCAL VARIANCE GAMMA AND EXPLICIT CALIBRATION TO OPTION PRICES , 2013, 1308.2326.
[4] Rama Cont,et al. Dynamics of implied volatility surfaces , 2002 .
[5] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[6] A. Lo,et al. Nonparametric Estimation of State‐Price Densities Implicit in Financial Asset Prices , 1998 .
[7] R. Cont,et al. Non-parametric calibration of jump–diffusion option pricing models , 2004 .
[8] Parametric Arbitrage-free Models for Implied Smile Dynamics , 2010 .
[9] P. Carr,et al. Option valuation using the fast Fourier transform , 1999 .
[10] R. Rebonato. Volatility and correlation : the perfect hedger and the fox , 2004 .
[11] Marc Yor,et al. From local volatility to local Lévy models , 2004 .
[12] Roger Lee,et al. Implied Volatility: Statics, Dynamics, and Probabilistic Interpretation , 2005 .
[13] Alan L. Lewis. A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .
[14] M. Schweizer,et al. TERM STRUCTURES OF IMPLIED VOLATILITIES: ABSENCE OF ARBITRAGE AND EXISTENCE RESULTS , 2007 .
[15] S. Karlsson,et al. Consistent dynamic equity market code-books from a practical point of view , 2011 .
[16] D. Heath,et al. Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation , 1990, Journal of Financial and Quantitative Analysis.
[17] Conditional Density Models for Asset Pricing , 2010, 1010.4384.
[18] J. Cockcroft. Investment in Science , 1962, Nature.
[19] P. J. Schonbucher. A market model for stochastic implied volatility , 1999 .
[20] Laurent Cousot,et al. Conditions on Option Prices for Absence of Arbitrage and Exact Calibration , 2006 .
[21] H. Kuo. Gaussian Measures in Banach Spaces , 1975 .
[22] P. Hagan,et al. MANAGING SMILE RISK , 2002 .
[23] Andrew W. Lo,et al. Nonparametric estimation of state-price densities implicit in financial asset prices , 1995, Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr).
[24] Johannes Wissel,et al. Arbitrage-free market models for option prices: the multi-strike case , 2008, Finance Stochastics.
[25] Emanuel Derman,et al. STOCHASTIC IMPLIED TREES: ARBITRAGE PRICING WITH STOCHASTIC TERM AND STRIKE STRUCTURE OF VOLATILITY , 1998 .
[26] René Carmona,et al. Tangent Lévy market models , 2012, Finance Stochastics.
[27] Rama Cont,et al. Stochastic Models of Implied Volatility Surfaces , 2002 .
[28] Jan Kallsen,et al. On a Heath–Jarrow–Morton approach for stock options , 2013, Finance Stochastics.
[29] Anja Richter,et al. Discrete Time Term Structure Theory and Consistent Recalibration Models , 2017, SIAM J. Financial Math..
[30] R. Schilling. Financial Modelling with Jump Processes , 2005 .
[31] G. West,et al. Calibration of the SABR Model in Illiquid Markets , 2005 .