Existence of solutions to first-order periodic boundary value problems

This article investigates the existence of solutions to boundary value problems (BVPs) involving systems of first-order ordinary differential equations and two-point, periodic boundary conditions. The methods involve novel differential inequalities and fixed-point theory to yield new theorems guaranteeing the existence of at least one solution.

[1]  J. Henderson,et al.  Topological transversality and boundary value problems on time scales , 2004 .

[2]  Wei Ding,et al.  Periodic boundary value problems for the first order impulsive functional differential equations , 2005, Appl. Math. Comput..

[3]  S. Hilger Analysis on Measure Chains — A Unified Approach to Continuous and Discrete Calculus , 1990 .

[4]  Vanessa Speeding,et al.  Taming nature's numbers , 2003 .

[5]  F. Obersnel,et al.  Old and New Results for First Order Periodic ODEs without Uniqueness: a Comprehensive Study by Lower and Upper Solutions , 2004 .

[6]  Pablo Amster,et al.  Existence of solutions to boundary value problems for dynamic systems on time scales , 2005 .

[7]  Jie Chen,et al.  Remarks on the periodic boundary value problems for first-order differential equations , 1999 .

[8]  Shiguo Peng,et al.  Positive solutions for first order periodic boundary value problem , 2004, Appl. Math. Comput..

[9]  Christopher C. Tisdell,et al.  Stability and instability for dynamic equations on time scales , 2005 .

[10]  Johnny Henderson,et al.  On the existence and uniqueness of solutions to boundary value problems on time scales , 2004 .

[11]  Xiaoming He,et al.  Periodic boundary value problems for first order impulsive integro-differential equations of mixed type , 2004 .

[12]  J. Nieto,et al.  Anti-periodic boundary value problem for nonlinear , 2003 .

[13]  A. Lomtatidze,et al.  On nonnegative solutions of a periodic type boundary value problem for first order scalar functional differential equations , 2004 .

[14]  Amos Gilat,et al.  Matlab, An Introduction With Applications , 2003 .

[15]  C. Tisdell Existence and Uniqueness to Nonlinear Dynamic Boundary Value Problems , 2006 .

[16]  A. Peterson,et al.  Dynamic Equations on Time Scales , 2001 .

[17]  H. Thompson,et al.  On the existence of solutions to boundary value problems on time scales , 2005 .

[18]  Tom Fenchel,et al.  Theories of populations in biological communities , 1977, Vegetatio.

[19]  Allan C. Peterson,et al.  Boundedness and Uniqueness of Solutions to Dynamic Equations on Time Scales , 2003 .

[20]  Temporal dimension and transition out of chaos , 1991 .

[21]  Wei Ding,et al.  Periodic boundary value problem for the second order impulsive functional differential equations , 2004, Appl. Math. Comput..

[22]  Lynn Erbe,et al.  Existence of solutions to second-order BVPs on time scales , 2005 .

[23]  A. Peterson,et al.  Dynamic Equations on Time Scales: An Introduction with Applications , 2001 .

[24]  A. Peterson,et al.  Three Point Boundary Value Problems on Time Scales , 2004 .

[25]  Martin Bohner,et al.  Oscillation and nonoscillation of forced second order dynamic equations , 2007 .

[26]  Xiaojing Yang Upper and lower solutions for periodic problems , 2003, Appl. Math. Comput..

[27]  Johnny Henderson,et al.  Uniqueness implies existence for three-point boundary value problems for dynamic equations , 2004, Appl. Math. Lett..