A multi-stack simulation of shunt currents in vanadium redox flow batteries

[1]  J. Bao,et al.  Studies on pressure losses and flow rate optimization in vanadium redox flow battery , 2014 .

[2]  Maria Skyllas-Kazacos,et al.  Investigation of the effect of shunt current on battery efficiency and stack temperature in vanadium redox flow battery , 2013 .

[3]  Andreas Poullikkas,et al.  A comparative overview of large-scale battery systems for electricity storage , 2013 .

[4]  Sally M. Benson,et al.  The energetic implications of curtailing versus storing solar- and wind-generated electricity , 2013 .

[5]  Andreas Sumper,et al.  A review of energy storage technologies for wind power applications , 2012 .

[6]  Jie Bao,et al.  Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadi , 2011 .

[7]  Huamin Zhang,et al.  Shunt current loss of the vanadium redox flow battery , 2011 .

[8]  Maria Skyllas-Kazacos,et al.  State of charge monitoring methods for vanadium redox flow battery control , 2011 .

[9]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[10]  Dongjiang You,et al.  A simple model for the vanadium redox battery , 2009 .

[11]  E. R. Henquín,et al.  Comparison between primary and secondary current distributions in bipolar electrochemical reactors , 2009 .

[12]  L.-D. Chen,et al.  Shunt current calculation of fuel cell stack using Simulink , 2008 .

[13]  Ravichandra S. Jupudi,et al.  Prediction of shunt currents in a bipolar electrolyzer stack by difference calculus , 2007 .

[14]  E. R. Henquín,et al.  Effect of leakage currents on the primary current distribution in bipolar electrochemical reactors , 2007 .

[15]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[16]  Ch. Fabjan,et al.  Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems , 2004 .

[17]  Toraj Mohammadi,et al.  Use of polyelectrolyte for incorporation of ion-exchange groups in composite membranes for vanadium redox flow battery applications , 1995 .

[18]  Antonio Aldaz,et al.  Development of a 0.1 kW power accumulation pilot plant based on an Fe/Cr redox flow battery Part I. Considerations on flow-distribution design , 1994 .

[19]  Antonio Aldaz,et al.  Scale-up studies of an Fe/Cr redox flow battery based on shunt current analysis , 1992 .

[20]  Ralph E. White,et al.  Predicting Shunt Currents in Stacks of Bipolar Plate Cells with Conducting Manifolds , 1988 .

[21]  Anthony G. Fane,et al.  New All‐Vanadium Redox Flow Cell , 1986 .

[22]  Ralph E. White,et al.  Predicting Shunt Currents in Stacks of Bipolar Plate Cells , 1986 .

[23]  M. A. Hoberecht,et al.  NASA-Redox cell-stack shunt current, pumping power, and cell-performance tradeoffs , 1982 .

[24]  N. H. Hagedorn,et al.  Design flexibility of redox flow systems , 1982 .

[25]  A. Lieberman,et al.  Design and assembly considerations for Redox cells and stacks , 1981 .

[26]  P. Prokopius Model for Calculating Electrolytic Shunt Path Losses in Large Electrochemical Energy Conversion Systems , 1976 .