Cryogenic toughness of natural silk and a proposed structure–function relationship

A highly aligned and relatively independent nanofibril structure contributes to the cryogenic toughness of natural silk.

[1]  H. Schniepp,et al.  Strength of Recluse Spider's Silk Originates from Nanofibrils. , 2018, ACS macro letters.

[2]  P. Zhou,et al.  Toughness of Spider Silk at High and Low Temperatures , 2005 .

[3]  G. McKenna,et al.  Hard‐Elastic fibers. (A review of a novel state for crystalline polymers) , 1976 .

[4]  Qunfeng Cheng,et al.  High‐Performance Nanocomposites Inspired by Nature , 2017, Advanced materials.

[5]  S. Licoccia,et al.  Rough fibrils provide a toughening mechanism in biological fibers. , 2012, ACS nano.

[6]  E. Schulz,et al.  The cook-gordon mechanism in polymeric materials , 1993 .

[7]  Z. Shao,et al.  Silk Fibers Extruded Artificially from Aqueous Solutions of Regenerated Bombyx mori Silk Fibroin are Tougher than their Natural Counterparts , 2009 .

[8]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[9]  Z. Shao,et al.  Understanding the Mechanical Properties and Structure Transition of Antheraea pernyi Silk Fiber Induced by Its Contraction. , 2018, Biomacromolecules.

[10]  M. Meyers,et al.  Structural Biological Materials: Critical Mechanics-Materials Connections , 2013, Science.

[11]  P. R. Pinnock,et al.  The mechanical properties of solid polymers , 1966 .

[12]  W. Ren Hard elastic polypropylene-nature, internal friction, and surface energy , 1992 .

[13]  Lei Liu,et al.  Synthetic nacre by predesigned matrix-directed mineralization , 2016, Science.

[14]  T. Vu-khanh,et al.  Mechanisms of brittle-ductile transition in toughened thermoplastics , 1997 .

[15]  M. Knight,et al.  Ultrastructure of insect and spider cocoon silks. , 2006, Biomacromolecules.

[16]  F Vollrath,et al.  Predicting the mechanical properties of spider silk as a model nanostructured polymer , 2005, The European physical journal. E, Soft matter.

[17]  Binghe Liu,et al.  Comparing the microstructure and mechanical properties of Bombyx mori and Antheraea pernyi cocoon composites. , 2017, Acta biomaterialia.

[18]  Francois Barthelat,et al.  Structure and mechanics of interfaces in biological materials , 2016 .

[19]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[20]  H. Noether,et al.  Crystalline “Hard” Elastic Materials , 1975 .

[21]  R. Lewis,et al.  Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. , 1999, International journal of biological macromolecules.

[22]  Wenwen Huang,et al.  Polymorphic regenerated silk fibers assembled through bioinspired spinning , 2017, Nature Communications.

[23]  E. Pogozelski,et al.  Mechanical testing of spider silk at cryogenic temperatures. , 2011, International journal of biological macromolecules.

[24]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[25]  Z. Shao,et al.  Animal silks: their structures, properties and artificial production. , 2009, Chemical communications.

[26]  Fritz Vollrath,et al.  Silk as a Biomimetic Ideal for Structural Polymers , 2009 .

[27]  Z. Shao,et al.  Understanding the variability of properties in Antheraea pernyi silk fibres. , 2014, Soft matter.

[28]  Z. Shao,et al.  Moisture Effects on Antheraea pernyi Silk's Mechanical Property , 2009 .

[29]  S. Fossey,et al.  Investigation of the nanofibrils of silk fibers , 2000 .

[30]  R. Ritchie,et al.  Enhancing the Mechanical Toughness of Epoxy-Resin Composites Using Natural Silk Reinforcements , 2017, Scientific Reports.

[31]  D. Kaplan,et al.  Tensan Silk-Inspired Hierarchical Fibers for Smart Textile Applications. , 2018, ACS nano.

[32]  G. Plaza,et al.  Thermo‐hygro‐mechanical behavior of spider dragline silk: Glassy and rubbery states , 2006 .

[33]  Z. Shao,et al.  Using solvents with different molecular sizes to investigate the structure of Antheraea pernyi silk. , 2013, Biomacromolecules.

[34]  Z. Shao,et al.  Understanding the Mechanical Properties of Antheraea Pernyi Silk—From Primary Structure to Condensed Structure of the Protein , 2011 .

[35]  I. M. Ward,et al.  Mechanical Properties of Solid Polymers: Third Edition , 2012 .

[36]  Gangqin Xu,et al.  What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. , 2013, Soft matter.

[37]  Fritz Vollrath,et al.  Thermally induced changes in dynamic mechanical properties of native silks. , 2013, Biomacromolecules.

[38]  W. D. Cooke,et al.  Atlas of Fibre Fracture and Damage to Textiles , 1998 .

[39]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[40]  Fritz Vollrath,et al.  Nanoscale toughness of spider silk , 2007 .

[41]  C. Siviour,et al.  Ballistic impact to access the high-rate behaviour of individual silk fibres , 2012 .

[42]  R. J. Gaymans,et al.  Fracture of polypropylene: 1. The effect of molecular weight and temperature at low and high test speed , 1998 .

[43]  K. Lee Silk Sericin Retards the Crystallization of Silk Fibroin , 2004 .

[44]  David L. Kaplan,et al.  New Opportunities for an Ancient Material , 2010, Science.

[45]  C. Riekel,et al.  Aspects of X-ray diffraction on single spider fibers. , 1999, International journal of biological macromolecules.

[46]  Fritz Vollrath,et al.  Materials: Surprising strength of silkworm silk , 2002, Nature.