Decidable first-order transition logics for PA-processes

We show the decidability of model checking PA-processes against several first-order logics based upon the reachability predicate. The main tool for this result is the recognizability by tree automata of the reachability relation. The tree automata approach and the transition logics we use allow a smooth and general treatment of parameterized model checking for PA. This approach is extended to handle a quite general notion of costs of PA steps. In particular, when costs are Parikh images of traces, we show decidability of a transition logic extended by some form of first-order reasoning over costs.

[1]  Jan A. Bergstra,et al.  Decidability of Bisimulation Equivalence for Processes Generating Context-Free Languages , 1987, PARLE.

[2]  Faron Moller,et al.  Verification on Infinite Structures , 2001, Handbook of Process Algebra.

[3]  Javier Esparza Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes , 1995, FCT.

[4]  James W. Thatcher,et al.  Generalized finite automata theory with an application to a decision problem of second-order logic , 1968, Mathematical systems theory.

[5]  Pawel Mielniczuk Basic theory of feature trees , 2004, TOCL.

[6]  J. C. M. Baeten,et al.  Process Algebra: Bibliography , 1990 .

[7]  Richard Mayr,et al.  Process rewrite systems , 1999, EXPRESS.

[8]  Helmut Seidl,et al.  Synchronized Tree Languages Revisited and New Applications , 2001, FoSSaCS.

[9]  Andreas Podelski,et al.  Efficient algorithms for pre* and post* on interprocedural parallel flow graphs , 2000, POPL '00.

[10]  Antonín Kucera,et al.  How to Parallelize Sequential Processes , 1997, CONCUR.

[11]  Richard Mayr Decidability of model checking with the temporal logic EF , 2001, Theor. Comput. Sci..

[12]  Mark Jerrum,et al.  Bisimulation Equivanlence Is Decidable for Normed Process Algebra , 1999 .

[13]  Rajeev Alur,et al.  Parametric temporal logic for “model measuring” , 2001, TOCL.

[14]  Jean-Éric Pin,et al.  On a Conjecture of Schnoebelen , 2003, Developments in Language Theory.

[15]  James L. Peterson,et al.  Petri Nets , 1977, CSUR.

[16]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[17]  Helmut Seidl Finite Tree Automata with Cost Functions , 1994, Theor. Comput. Sci..

[18]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[19]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[20]  E. Allen Emerson,et al.  Parametric quantitative temporal reasoning , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[21]  Jens Knoop,et al.  An Automata-Theoretic Approach to Interprocedural Data-Flow Analysis , 1999, FoSSaCS.

[22]  Philippe Schnoebelen,et al.  The regular viewpoint on PA-processes , 1998, Theor. Comput. Sci..

[23]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[24]  Rohit Parikh,et al.  On Context-Free Languages , 1966, JACM.

[25]  Didier Caucal On Word Rewriting Systems Having a Rational Derivation , 2000, FoSSaCS.

[26]  Richard Mayr Tableau Methods for PA-Processes , 1997, TABLEAUX.

[27]  Antonín Kucera,et al.  Regularity is Decidable for Normed PA Processes in Polynomial Time , 1996, FSTTCS.

[28]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[29]  Tayssir Touili,et al.  Reachability Analysis of Process Rewrite Systems , 2003, FSTTCS.

[30]  Ahmed Bouajjani,et al.  Verifying infinite state processes with sequential and parallel composition , 1995, POPL '95.

[31]  Hubert Comon-Lundh,et al.  Timed Automata and the Theory of Real Numbers , 1999, CONCUR.

[32]  Richard Mayr,et al.  Deciding Bisimulation-Like Equivalences with Finite-State Processes , 1998, ICALP.

[33]  Jan A. Bergstra,et al.  Decidability of bisimulation equivalence for process generating context-free languages , 1987, JACM.

[34]  Sophie Tison,et al.  The theory of ground rewrite systems is decidable , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[35]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[36]  Faron Moller,et al.  Infinite Results , 1996, CONCUR.

[37]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[38]  Thomas A. Henzinger,et al.  A really temporal logic , 1994, JACM.

[39]  Amir Pnueli,et al.  Symbolic model checking with rich assertional languages , 2001, Theor. Comput. Sci..

[40]  A. Bouajjani,et al.  On the verification problem of nonregular properties for nonregular processes , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.