Introducing DMRadio-GUT, a search for GUT-scale QCD axions

The QCD axion is a leading dark matter candidate that emerges as part of the solution to the strong CP problem in the Standard Model. The coupling of the axion to photons is the most common experimental probe, but much parameter space remains unexplored. The coupling of the QCD axion to the Standard Model scales linearly with the axion mass; therefore, the highly-motivated region 0.4-120 neV, corresponding to a GUT-scale axion, is particularly difficult to reach. This paper presents the design requirements for a definitive search for GUT-scale axions and reviews the technological advances needed to enable this program.

[1]  A. Phipps,et al.  Quantum metrology of low frequency electromagnetic modes with frequency upconverters , 2022, 2210.05576.

[2]  B. Safdi,et al.  Upper Limit on the QCD Axion Mass from Isolated Neutron Star Cooling. , 2021, Physical review letters.

[3]  Weiqun Zhang,et al.  Dark matter from axion strings with adaptive mesh refinement , 2021, Nature Communications.

[4]  S. Chaudhuri Impedance matching to axion dark matter: considerations of the photon-electron interaction , 2021, Journal of Cosmology and Astroparticle Physics.

[5]  A. Ringwald,et al.  Photophilic hadronic axion from heavy magnetic monopoles , 2021, Journal of High Energy Physics.

[6]  Andrew S. Gavin,et al.  Search for Low-Mass Axion Dark Matter with ABRACADABRA-10 cm. , 2021, Physical review letters.

[7]  P. F. de Salas,et al.  Dark matter local density determination: recent observations and future prospects , 2020, Reports on progress in physics. Physical Society.

[8]  D. Schuster,et al.  Searching for Dark Matter with a Superconducting Qubit. , 2020, Physical review letters.

[9]  G. Hilton,et al.  A quantum enhanced search for dark matter axions , 2020, Nature.

[10]  P. Snyder,et al.  Overview of the SPARC tokamak , 2020, Journal of Plasma Physics.

[11]  G. Villadoro,et al.  More axions from strings , 2020, 2007.04990.

[12]  A. Sushkov,et al.  Search for axion-like dark matter with ferromagnets , 2020, Nature Physics.

[13]  M. Giannotti,et al.  The landscape of QCD axion models , 2020, Physics Reports.

[14]  D. Tanner,et al.  ADMX SLIC: Results from a Superconducting LC Circuit Investigating Cold Axions. , 2019, Physical review letters.

[15]  A. D. Plascencia,et al.  Axion dark matter, proton decay and unification , 2019, Journal of High Energy Physics.

[16]  T. Fischer,et al.  Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung , 2019, Journal of Cosmology and Astroparticle Physics.

[17]  Connor T. FitzGerald,et al.  Exclusion Limits on Hidden-Photon Dark Matter Near 2 neV from a Fixed-Frequency Superconducting Lumped-Element Resonator , 2019, Microwave Cavities and Detectors for Axion Research.

[18]  B. Nelson,et al.  Towards string theory expectations for photon couplings to axionlike particles , 2019, Physical Review D.

[19]  A. D. Plascencia,et al.  The QCD axion and unification , 2019, Journal of High Energy Physics.

[20]  Kwangmin Kim,et al.  45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet , 2019, Nature.

[21]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[22]  K. Irwin,et al.  Optimal Electromagnetic Searches for Axion and Hidden-Photon Dark Matter , 2019, 1904.05806.

[23]  Alexey Radovinsky,et al.  Design and implementation of the ABRACADABRA-10 cm axion dark matter search , 2019, Physical Review D.

[24]  A. Ringwald,et al.  Axion properties in GUTs , 2018, Proceedings of Corfu Summer Institute 2018 "School and Workshops on Elementary Particle Physics and Gravity" — PoS(CORFU2018).

[25]  L. Winslow,et al.  First Results from ABRACADABRA-10 cm: A Search for Sub-μeV Axion Dark Matter. , 2018, Physical review letters.

[26]  J. Ouellet,et al.  Solutions to axion electrodynamics in various geometries , 2018, Physical Review D.

[27]  E. Daw Resonant feedback for axion and hidden sector dark matter searches , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[28]  A. Ringwald,et al.  Axion mass prediction from minimal grand unification , 2018, Physical Review D.

[29]  E Aprile,et al.  Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. , 2018, Physical review letters.

[30]  A. Guth,et al.  QCD axion window and low-scale inflation , 2018, Physical Review D.

[31]  P. Graham,et al.  Stochastic axion scenario , 2018, Physical Review D.

[32]  A. Shlivinski,et al.  Beyond the Bode-Fano Bound: Wideband Impedance Matching for Short Pulses Using Temporal Switching of Transmission-Line Parameters. , 2018, Physical review letters.

[33]  G. Apollinari,et al.  Progress on HL-LHC Nb3Sn Magnets , 2018, IEEE Transactions on Applied Superconductivity.

[34]  K. Irwin,et al.  Optimal Impedance Matching and Quantum Limits of Electromagnetic Axion and Hidden-Photon Dark Matter Searches , 2018, 1803.01627.

[35]  B. Brubaker First results from the HAYSTAC axion search , 2018, 1801.00835.

[36]  Betty A. Young,et al.  Results from the Super Cryogenic Dark Matter Search Experiment at Soudan. , 2017, Physical review letters.

[37]  JiJi Fan,et al.  Experimental targets for photon couplings of the QCD axion , 2017, 1709.06085.

[38]  G. Moore,et al.  The dark-matter axion mass , 2017, 1708.07521.

[39]  Hiroshi Miyazaki,et al.  First performance test of a 25 T cryogen-free superconducting magnet , 2017 .

[40]  K. Irwin,et al.  Design Overview of the DM Radio Pathfinder Experiment , 2016, 1610.09344.

[41]  K.,et al.  Improving Broadband Displacement Detection with Quantum Correlations , 2016, 1607.06831.

[42]  D. Pappadopulo,et al.  The photo-philic QCD axion , 2016, 1611.09855.

[43]  C. Ospelkaus,et al.  Highly sensitive superconducting circuits at ∼700 kHz with tunable quality factors for image-current detection of single trapped antiprotons. , 2016, The Review of scientific instruments.

[44]  A. Ringwald,et al.  Standard Model—axion—seesaw—Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke , 2016, 1610.01639.

[45]  L. Hall,et al.  Supersymmetric axion grand unified theories and their predictions , 2016 .

[46]  B. Safdi,et al.  Broadband and Resonant Approaches to Axion Dark Matter Detection. , 2016, Physical review letters.

[47]  Onur Hosten,et al.  Measurement noise 100 times lower than the quantum-projection limit using entangled atoms , 2016, Nature.

[48]  Javier Pardo Vega,et al.  The QCD axion, precisely , 2015, 1511.02867.

[49]  K. Irwin,et al.  Radio for hidden-photon dark matter detection , 2014, 1411.7382.

[50]  M. Giannotti,et al.  Revisiting the bound on axion-photon coupling from globular clusters. , 2014, Physical review letters.

[51]  Hideaki Maeda,et al.  Recent Developments in High-Temperature Superconducting Magnet Technology (Review) , 2014, IEEE Transactions on Applied Superconductivity.

[52]  D. Tanner,et al.  Proposal for axion dark matter detection using an LC circuit. , 2013, Physical review letters.

[53]  A. Ringwald Searching for axions and ALPs from string theory , 2012, 1209.2299.

[54]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[55]  M. Catelán,et al.  Neutrino and axion bounds from the globular cluster M5 (NGC 5904). , 2013, Physical review letters.

[56]  K. Freese,et al.  Colloquium: Annual modulation of dark matter , 2013 .

[57]  A. Ringwald,et al.  The type IIB string axiverse and its low-energy phenomenology , 2012, 1206.0819.

[58]  L. Rossi,et al.  Advanced Accelerator Magnets for Upgrading the LHC , 2012, IEEE Transactions on Applied Superconductivity.

[59]  M. S. Shahriar,et al.  Enhancement of sensitivity and bandwidth of gravitational wave detectors using fast-light-based white light cavities , 2010 .

[60]  Piyush Kumar,et al.  An M theory solution to the strong CP-problem, and constraints on the axiverse , 2010, 1004.5138.

[61]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[62]  K. Blaum,et al.  The quality factor of a superconducting rf resonator in a magnetic field. , 2009, The Review of scientific instruments.

[63]  T. Hayler,et al.  Observation of a kilogram-scale oscillator near its quantum ground state , 2009 .

[64]  S. Sussman-Fort,et al.  Non-Foster Impedance Matching of Electrically-Small Antennas , 2009, IEEE Transactions on Antennas and Propagation.

[65]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[66]  G. Prodi,et al.  10ℏ superconducting quantum interference device amplifier for acoustic gravitational wave detectors , 2008 .

[67]  Frank Wilczek,et al.  Axion cosmology and the energy scale of inflation , 2008, 0807.1726.

[68]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[69]  Paolo Ferracin,et al.  Limits of NbTi and Nb3Sn, and Development of W&R Bi-2212 High Field Accelerator Magnets , 2008 .

[70]  N. Mitchell,et al.  The ITER Magnet System , 2008, IEEE Transactions on Applied Superconductivity.

[71]  A. Clerk,et al.  Back-action evasion and squeezing of a mechanical resonator using a cavity detector , 2008, 0802.1842.

[72]  J. Conlon The QCD axion and moduli stabilisation , 2006, hep-th/0602233.

[73]  F. Wilczek,et al.  Dimensionless constants, cosmology and other dark matters , 2005, astro-ph/0511774.

[74]  Alex I. Braginski,et al.  Applications of SQUIDs and SQUID systems , 2006 .

[75]  R. Fan THEORETICAL LIMITATIONS ON THE BROADBAND MATCHING OF ARBITRARY IMPEDANCES * , 2003 .

[76]  G. Raffelt Astrophysical axion bounds , 2006, hep-ph/0611350.

[77]  J. Zendri,et al.  A high inductance kHz resonator with a quality factor larger than 106 , 1994 .

[78]  Turner,et al.  Periodic signatures for the detection of cosmic axions. , 1990, Physical review. D, Particles and fields.

[79]  P. Sikivie,et al.  Detection rates for "invisible"-axion searches. , 1985, Physical review. D, Particles and fields.

[80]  D. Blair,et al.  High Q sapphire loaded superconducting cavities and application to ultrastable clocks , 1985 .

[81]  E. Witten Some properties of O(32) superstrings , 1984 .

[82]  John H. Schwarz,et al.  Anomaly cancellations in supersymmetric D=10 gauge theory and superstring theory , 1984 .

[83]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[84]  Laurence F Abbott,et al.  A cosmological bound on the invisible axion , 1983 .

[85]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[86]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[87]  Michael Dine,et al.  A Simple Solution to the Strong CP Problem with a Harmless Axion , 1981 .

[88]  H. Georgi,et al.  SU(5) and the invisible axion , 1981 .

[89]  A. Vainshtein,et al.  Can Confinement Ensure Natural CP Invariance of Strong Interactions , 1980 .

[90]  A. P. Zhitnitskii Possible suppression of axion-hadron interactions , 1980 .

[91]  John Clarke,et al.  Optimization of dc SQUID voltmeter and magnetometer circuits , 1979 .

[92]  Jihn E. Kim Weak Interaction Singlet and Strong CP Invariance , 1979 .

[93]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[94]  S. Weinberg A new light boson , 1978 .

[95]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .