Effect of complexing ligands on the surface adsorption, internalization, and bioresponse of copper and cadmium in a soil bacterium, Pseudomonas putida.

[1]  Anne Kahru,et al.  The Effect of Composition of Different Ecotoxicological Test Media on Free and Bioavailable Copper from CuSO4 and CuO Nanoparticles: Comparative Evidence from a Cu-Selective Electrode and a Cu-Biosensor , 2011, Sensors.

[2]  A. Anderson,et al.  Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. , 2011, Environmental pollution.

[3]  G. Paton,et al.  Bioavailability and toxicity of copper in soils: Integrating chemical approaches with responses of microbial biosensors , 2011 .

[4]  J. Mertens,et al.  Copper toxicity to bioluminescent Nitrosomonas europaea in soil is explained by the free metal ion activity in pore water. , 2010, Environmental science & technology.

[5]  C. D. Miller,et al.  Defining the surface adsorption and internalization of copper and cadmium in a soil bacterium, Pseudomonas putida. , 2010, Chemosphere.

[6]  Holger Moch,et al.  Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. , 2010, Toxicology letters.

[7]  V. Slaveykova,et al.  Role of extracellular compounds in Cd-sequestration relative to Cd uptake by bacterium Sinorhizobium meliloti. , 2010, Environmental pollution.

[8]  B. Peyton,et al.  Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp. isolated from heavy-metal-contaminated sediments. , 2010, Environmental science & technology.

[9]  Huzhi Zheng,et al.  Rapid determination of the toxicity of quantum dots with luminous bacteria. , 2010, Journal of hazardous materials.

[10]  O. Nybroe,et al.  Development of pollution-induced community tolerance is linked to structural and functional resilience of a soil bacterial community following a five-year field exposure to copper , 2010 .

[11]  A. Anderson,et al.  Copper and cadmium: responses in Pseudomonas putida KT2440 , 2009, Letters in applied microbiology.

[12]  Marie Carrière,et al.  Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. , 2009, Environmental science & technology.

[13]  Anne J Anderson,et al.  Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440 , 2009, Journal of biological engineering.

[14]  V. Slaveykova,et al.  Effect of competing ions and complexing organic substances on the cadmium uptake by the soil bacterium Sinorhizobium meliloti , 2009, Environmental toxicology and chemistry.

[15]  Rachel Lubart,et al.  Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS‐Mediated Cell Injury , 2009 .

[16]  O. Nybroe,et al.  Differential bioavailability of copper complexes to bioluminescent Pseudomonas fluorescens reporter strains , 2008, Environmental toxicology and chemistry.

[17]  Anne Kahru,et al.  Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. , 2008, Chemosphere.

[18]  O. Nybroe,et al.  Evidence for bioavailable copper-dissolved organic matter complexes and transiently increased copper bioavailability in manure-amended soils as determined by bioluminescent bacterial biosensors. , 2008, Environmental science & technology.

[19]  P. Qian,et al.  Influences of metal‐ligand complexes on the cadmium and zinc biokinetics in the marine bacterium, Bacillus firmus , 2008, Environmental toxicology and chemistry.

[20]  V. Slaveykova,et al.  Predicting Pb bioavailability to freshwater microalgae in the presence of fulvic acid: algal cell density as a variable. , 2007, Chemosphere.

[21]  G. Hornberger,et al.  On the Use of Linearized Langmuir Equations , 2007 .

[22]  V. Blancato,et al.  Functional characterization and Me2+ ion specificity of a Ca2+–citrate transporter from Enterococcus faecalis , 2006, The FEBS journal.

[23]  G. Stucky,et al.  Imaging Escherichia coli using functionalized core/shell CdSe/CdS quantum dots , 2006, JBIC Journal of Biological Inorganic Chemistry.

[24]  M. Benedetti,et al.  Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. , 2006, Nano letters.

[25]  K. Wilkinson,et al.  Influence of the composition of natural organic matter on Pb bioavailability to microalgae. , 2005, Environmental science & technology.

[26]  K. Wilkinson,et al.  Cadmium uptake by a green alga can be predicted by equilibrium modelling. , 2005, Environmental science & technology.

[27]  B. Lighthart Effects of certain cadmium species on pure and litter populations of microorganisms , 2004, Antonie van Leeuwenhoek.

[28]  K. Wilkinson,et al.  Cd bioaccumulation by a freshwater bacterium, Rhodospirillum rubrum. , 2003, Environmental science & technology.

[29]  Domenico Grasso,et al.  Effect of nickel and cadmium speciation on nitrification inhibition. , 2002, Environmental science & technology.

[30]  K. Wilkinson,et al.  Physicochemical aspects of lead bioaccumulation by Chlorella vulgaris. , 2002, Environmental science & technology.

[31]  W. Konings,et al.  Complementary Metal Ion Specificity of the Metal-Citrate Transporters CitM and CitH of Bacillus subtilis , 2000, Journal of bacteriology.

[32]  P. Campbell,et al.  CADMIUM AND ZINC BIOAVAILABILITY TO SELENASTRUM CAPRICORNUTUM (CHLOROPHYCEAE): ACCIDENTAL METAL UPTAKE AND TOXICITY IN THE PRESENCE OF CITRATE , 2000, Journal of phycology.

[33]  D. Wilson,et al.  Characterization of Cadmium Uptake in Lactobacillus plantarum and Isolation of Cadmium and Manganese Uptake Mutants , 1999, Applied and Environmental Microbiology.

[34]  T. Beveridge,et al.  Effect of O-Side-Chain-Lipopolysaccharide Chemistry on Metal Binding , 1999, Applied and Environmental Microbiology.

[35]  S. Silver Genes for all metals—a bacterial view of the Periodic Table , 1998, Journal of Industrial Microbiology & Biotechnology.

[36]  D. Leibfritz,et al.  Study of the interactions of cadmium and zinc ions with cellular calcium homoeostasis using 19F-NMR spectroscopy. , 1997, The Biochemical journal.

[37]  K. Bruland,et al.  Effects of dithiocarbamate and 8-hydroxyquinoline additions on algal uptake of ambient copper and nickel in South San Francisco Bay water , 1997 .

[38]  D. Parker,et al.  GEOCHEM‐PC—A Chemical Speciation Program for IBM and Compatible Personal Computers , 1995 .

[39]  G. Joshi-Tope,et al.  Mechanisms of biodegradation of metal-citrate complexes by Pseudomonas fluorescens , 1995, Journal of bacteriology.

[40]  P. Campbel Interactions between trace metals and aquatic organisms : A critique of the Free-ion Activity Model , 1995 .

[41]  S. Goldberg,et al.  Chemical equilibrium and reaction models , 1995 .

[42]  K. Bruland,et al.  Uptake of Lipophilic Organic Cu, Cd, and Pb Complexes in the Coastal Diatom Thalassiosira weissflogii. , 1994, Environmental science & technology.

[43]  R. Playle,et al.  Copper and Cadmium Binding to Fish Gills: Estimates of Metal–Gill Stability Constants and Modelling of Metal Accumulation , 1993 .

[44]  K. L. Shuttleworth,et al.  Sorption of Heavy Metals to the Filamentous Bacterium Thiothrix Strain A1 , 1993, Applied and environmental microbiology.

[45]  M. Vaara,et al.  Agents that increase the permeability of the outer membrane. , 1992, Microbiological reviews.

[46]  J. Cha,et al.  Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[47]  G. Canters,et al.  The azurin gene from Pseudomonas aeruginosa codes for a pre‐protein with a signal peptide , 1987, FEBS letters.

[48]  F. Morel Principles of Aquatic Chemistry , 1983 .

[49]  J. E. Poldoski Cadmium bioaccumulation assays. Their relationship to various ionic equilibria in Lake Superior water. , 1979, Environmental science & technology.

[50]  A. Anderson,et al.  Agglutination of pseudomonad cells by plant products , 1979 .