Recovering Signal Energy From the Cyclic Prefix in OFDM

In orthogonal frequency-division multiplexing (OFDM) systems, a cyclic prefix (CP) is often added at the transmitter and discarded at the receiver. When the length of the CP exceeds the delay spread of the channel, a portion of the CP can be used to recover additional signal energy. In the past, Nyquist windowing techniques have been proposed to recover signal energy, thereby improving performance. In this paper, linear maximum-likelihood (ML) and minimum-mean-square-error (MMSE) approaches are developed, which further improve performance, particularly when the signal-to-noise ratio (SNR) is low. Simpler two-valued windowing (TVW) solutions are also provided, which generally employ one or two non-Nyquist windows.

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  D. Mackay,et al.  Low density parity check codes over GF(q) , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[3]  Robert N. McDonough,et al.  Detection of signals in noise , 1971 .

[4]  Dariush Divsalar,et al.  Serial concatenated trellis coded modulation with rate-1 inner code , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[5]  R. Chang,et al.  A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme , 1968 .

[6]  Asrar U. H. Sheikh,et al.  Combining schemes in rake receiver for low spreading factor long-code W-CDMA systems , 2000 .

[7]  Arthur J. Redfern Receiver window design for multicarrier communication systems , 2002, IEEE J. Sel. Areas Commun..

[8]  K. J. Ray Liu,et al.  Space-time signal design for time-correlated Rayleigh fading channels , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[9]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[10]  Xiaowen Wang,et al.  Performance analysis for adaptive channel estimation exploiting cyclic prefix in multicarrier modulation systems , 2003, IEEE Trans. Commun..

[11]  Thomas Kailath,et al.  Linear Systems , 1980 .

[12]  Lajos Hanzo,et al.  Turbo Coding, Turbo Equalisation and Space-Time Coding for Transmission over Fading Channels , 2002 .

[13]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[14]  P. M. Grant,et al.  Digital communications. 3rd ed , 2009 .

[15]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[16]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[17]  Anna Scaglione,et al.  Design of user codes in QS-CDMA systems for MUI elimination in unknown multipath , 1999, IEEE Communications Letters.

[18]  S. H. Muller-Weinfurtner Optimum Nyquist windowing in OFDM receivers , 2001 .

[19]  A. Grant,et al.  Convergence of non-binary iterative decoding , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[20]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[21]  Andrea M. Tonello,et al.  Performance limits for filtered multitone modulation in fading channels , 2005, IEEE Transactions on Wireless Communications.

[22]  John G. Proakis,et al.  Digital Communications , 1983 .

[23]  Lajos Hanzo,et al.  A Turbo Detection and Sphere-Packing-Modulation-Aided Space-Time Coding Scheme , 2007, IEEE Transactions on Vehicular Technology.

[24]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[25]  Shu Hung Leung,et al.  A novel OFDM receiver with second order polynomial Nyquist window function , 2005, IEEE Commun. Lett..

[26]  Gregory E. Bottomley,et al.  A generalized RAKE receiver for interference suppression , 2000, IEEE Journal on Selected Areas in Communications.

[27]  Sergio Benedetto,et al.  Convergence properties of iterative decoders working at bit and symbol level , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[28]  S. Weinstein,et al.  Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform , 1971 .

[29]  Georgios B. Giannakis,et al.  Cyclic prefixing or zero padding for wireless multicarrier transmissions? , 2002, IEEE Trans. Commun..

[30]  Lajos Hanzo,et al.  Efficient Computation of EXIT Functions for Nonbinary Iterative Decoding , 2006, IEEE Transactions on Communications.

[31]  C. Muschallik,et al.  Improving an OFDM reception using an adaptive Nyquist windowing , 1996, 1996. Digest of Technical Papers., International Conference on Consumer Electronics.