Importance Sampling for Coded-Modulation Error Probability Estimation

This paper proposes an efficient simulation method based on importance sampling to estimate the random-coding error probability of coded modulation. The technique is valid for complex-valued modulations over Gaussian channels, channels with memory, and naturally extends to fading channels. The simulation method is built on two nested importance samplers to respectively estimate the pairwise error probability and generate the channel input and output. The effect of the respective number of samples on the overall bias and variance of the estimate of the error probability is characterized. For a memoryless channel, the estimator is shown to be consistent and with a small variance, growing with the square root of the code length, rather than the exponential growth of a standard Monte Carlo estimator.

[1]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[2]  Igal Sason,et al.  An Improved Sphere-Packing Bound for Finite-Length Codes Over Symmetric Memoryless Channels , 2006, IEEE Transactions on Information Theory.

[3]  R. Durrett Probability: Theory and Examples , 1993 .

[4]  Bruce R. Davis An Improved Importance Sampling Method for Digital Communication System Simulations , 1986, IEEE Trans. Commun..

[5]  Michel C. Jeruchim,et al.  On optimum and suboptimum biasing procedures for importance sampling in communication simulation , 1990, IEEE Trans. Commun..

[6]  Kung Yao,et al.  On Importance Sampling in Digital Communications - Part I: Fundamentals , 1993, IEEE J. Sel. Areas Commun..

[7]  Dong-Soo Har,et al.  Evaluation of the Low Error-Rate Performance of LDPC Codes over Rayleigh Fading Channels Using Importance Sampling , 2013, IEEE Transactions on Communications.

[8]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[9]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[10]  Junya Honda,et al.  Exact asymptotics for the random coding error probability , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[11]  Albert Guillén i Fàbregas,et al.  Mismatched Decoding: Error Exponents, Second-Order Rates and Saddlepoint Approximations , 2013, IEEE Transactions on Information Theory.

[12]  Gonzalo Vazquez-Vilar,et al.  Saddlepoint approximations of lower and upper bounds to the error probability in channel coding , 2018, 2018 52nd Annual Conference on Information Sciences and Systems (CISS).

[13]  Kung Yao,et al.  Improved importance sampling technique for efficient simulation of digital communication systems , 1988, IEEE J. Sel. Areas Commun..

[14]  C. Shannon Probability of error for optimal codes in a Gaussian channel , 1959 .

[15]  Juan Carlos Abril,et al.  Saddlepoint Approximations , 2011, International Encyclopedia of Statistical Science.

[16]  P. Balaban,et al.  A Modified Monte-Carlo Simulation Technique for the Evaluation of Error Rate in Digital Communication Systems , 1980, IEEE Trans. Commun..

[17]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[18]  David R. Cox,et al.  Approximations to noncentral distributions , 1987 .

[19]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[20]  Gerardo Rubino,et al.  Introduction to Rare Event Simulation , 2009, Rare Event Simulation using Monte Carlo Methods.

[21]  William E. Ryan,et al.  Efficient Error-Correcting Codes in the Short Blocklength Regime , 2018, Phys. Commun..

[22]  Babak Daneshrad,et al.  Low BER performance estimation of LDPC codes via application of importance sampling to trapping sets , 2009, IEEE Transactions on Communications.

[23]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.