Numerical simulation of the postformation evolution of a laminar vortex ring

Direct numerical simulations are used to study the postformation evolution of a laminar vortex ring. The vortex structure is described by calculating the embedded boundaries of the vortex inner core, vortex core, and vortex bubble. The topology of the vortex ring is found to be self-similar during the entire postformation phase. We also show that extracting the vortex inner core provides an objective method in setting the upper value for the cutoff vorticity level separating the vortex from its tail. The computed power laws describing the decay of the translation velocity and integrals of motion (circulation, impulse, and energy) are shown to be consistent with both studies of Dabiri and Gharib [J. Fluid Mech. 511, 311 (2004)] and Maxworthy [J. Fluid Mech. 51, 15 (1972)]. We prove that the apparently different scaling laws reported in these two studies collapse if a virtual time origin is properly defined. Finally, the computationally generated vortex rings are matched to the classical Norbury–Fraenkel mo...

[1]  A. Michalke Survey on jet instability theory , 1984 .

[2]  Kamran Mohseni,et al.  Statistical equilibrium theory for axisymmetric flows: Kelvin’s variational principle and an explanation for the vortex ring pinch-off process , 2001 .

[3]  S. Dalziel,et al.  An experimental study of the bulk properties of vortex rings translating through a stratified fluid , 2006 .

[4]  Morteza Gharib,et al.  Energy and velocity of a forming vortex ring , 2000 .

[5]  L. E. Fraenkel,et al.  Examples of steady vortex rings of small cross-section in an ideal fluid , 1972, Journal of Fluid Mechanics.

[6]  Kamran Mohseni,et al.  On the Effect of Pipe Boundary Layer Growth on the Formation of a Laminar Vortex Ring Generated by a Piston/Cylinder Arrangement , 2002 .

[7]  John O. Dabiri,et al.  Starting flow through nozzles with temporally variable exit diameter , 2005, Journal of Fluid Mechanics.

[8]  Paolo Orlandi,et al.  Fluid Flow Phenomena: A Numerical Toolkit , 1999 .

[9]  M. Gharib,et al.  A universal time scale for vortex ring formation , 1998, Journal of Fluid Mechanics.

[10]  Philip Geoffrey Saffman The number of waves on unstable vortex rings , 1978 .

[11]  T. Maxworthy The structure and stability of vortex rings , 1972, Journal of Fluid Mechanics.

[12]  Kamran Mohseni,et al.  Numerical experiments on vortex ring formation , 2001, Journal of Fluid Mechanics.

[13]  Kamran Mohseni,et al.  A formulation for calculating the translational velocity of a vortex ring or pair , 2006, Bioinspiration & biomimetics.

[14]  T. Maxworthy,et al.  Some experimental studies of vortex rings , 1977, Journal of Fluid Mechanics.

[15]  Moshe Rosenfeld,et al.  Circulation and formation number of laminar vortex rings , 1998, Journal of Fluid Mechanics.

[16]  Shaoul Ezekiel,et al.  Study of Vortex Rings Using a Laser Doppler Velocimeter , 1973 .

[17]  R. Verzicco,et al.  A Finite-Difference Scheme for Three-Dimensional Incompressible Flows in Cylindrical Coordinates , 1996 .

[18]  H. K. Moffatt Generalised vortex rings with and without swirl , 1988 .

[19]  Luc Mongeau,et al.  Effects of trailing jet instability on vortex ring formation , 2000 .

[20]  Paul Linden,et al.  The formation of ‘optimal’ vortex rings, and the efficiency of propulsion devices , 2001, Journal of Fluid Mechanics.

[21]  K. Mahesh,et al.  Passive scalar mixing in vortex rings , 2006, Journal of Fluid Mechanics.

[22]  I. Orlanski A Simple Boundary Condition for Unbounded Hyperbolic Flows , 1976 .

[23]  J. Norbury,et al.  A family of steady vortex rings , 1973, Journal of Fluid Mechanics.

[24]  D. Akhmetov Formation and basic parameters of vortex rings , 2001 .

[25]  F. Kaplanski,et al.  A model for the formation of optimal vortex rings taking into account viscosity , 2005 .

[26]  Morteza Gharib,et al.  On the evolution of laminar vortex rings , 1997 .

[27]  John O. Dabiri,et al.  Vortex ring pinchoff in the presence of simultaneously initiated uniform background co-flow , 2003 .

[28]  John O. Dabiri,et al.  Fluid entrainment by isolated vortex rings , 2004, Journal of Fluid Mechanics.

[29]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[30]  Eckart Meiburg,et al.  Development of boundary conditions for direct numerical simulations of three-dimensional vortex breakdown phenomena in semi-infinite domains , 2004 .

[31]  C. K. Madnia,et al.  Direct numerical simulation of a laminar vortex ring , 1996 .

[32]  Kamran Mohseni,et al.  A model for universal time scale of vortex ring formation , 1998 .