Fatty acids, alcohol and fatty acid ethyl esters: toxic Ca2+ signal generation and pancreatitis.

[1]  M. Chvanov,et al.  Modulation of calcium signalling by mitochondria. , 2009, Biochimica et biophysica acta.

[2]  M. Hayden,et al.  The role of free fatty acids, pancreatic lipase and Ca2+ signalling in injury of isolated acinar cells and pancreatitis model in lipoprotein lipase‐deficient mice , 2009, Acta physiologica.

[3]  P. Koncz,et al.  When is high‐Ca2+ microdomain required for mitochondrial Ca2+ uptake? * , 2009, Acta physiologica.

[4]  M. Hayden,et al.  Enhanced susceptibility to pancreatitis in severe hypertriglyceridaemic lipoprotein lipase-deficient mice and agonist-like function of pancreatic lipase in pancreatic cells , 2008, Gut.

[5]  M. Ohmuraya,et al.  Autophagy and acute pancreatitis: A novel autophagy theory for trypsinogen activation , 2008, Autophagy.

[6]  J. Neoptolemos,et al.  Direct activation of cytosolic Ca2+ signaling and enzyme secretion by cholecystokinin in human pancreatic acinar cells. , 2008, Gastroenterology.

[7]  Min Goo Lee,et al.  Pancreatitis: the neglected duct , 2008, Gut.

[8]  M. Ohmuraya,et al.  Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells , 2008, The Journal of cell biology.

[9]  G. Lur,et al.  ATP depletion induces translocation of STIM1 to puncta and formation of STIM1–ORAI1 clusters: translocation and re-translocation of STIM1 does not require ATP , 2008, Pflügers Archiv - European Journal of Physiology.

[10]  Shmuel Muallem,et al.  The solute carrier 26 family of proteins in epithelial ion transport. , 2008, Physiology.

[11]  Catherine B. Chan,et al.  Limited Mitochondrial Permeabilization Is an Early Manifestation of Palmitate-induced Lipotoxicity in Pancreatic β-Cells* , 2008, Journal of Biological Chemistry.

[12]  R. Pirola,et al.  Individual susceptibility to alcoholic pancreatitis , 2008, Journal of gastroenterology and hepatology.

[13]  G. Rutter,et al.  ATP depletion inhibits Ca2+ release, influx and extrusion in pancreatic acinar cells but not pathological Ca2+ responses induced by bile , 2008, Pflügers Archiv - European Journal of Physiology.

[14]  P. Hegyi,et al.  Effects of bile acids on pancreatic ductal bicarbonate secretion in guinea pig , 2008, Gut.

[15]  O. Petersen,et al.  Polarized calcium signaling in exocrine gland cells. , 2008, Annual review of physiology.

[16]  M. Kreft,et al.  Elementary properties of spontaneous fusion of peptidergic vesicles: fusion pore gating , 2007, The Journal of physiology.

[17]  C. Kahn,et al.  Endocrine regulation of ageing , 2007, Nature Reviews Molecular Cell Biology.

[18]  Min Goo Lee,et al.  TRPC channels as STIM1-regulated store-operated channels. , 2007, Cell calcium.

[19]  Xibao Liu,et al.  TRPC1: the link between functionally distinct store-operated calcium channels. , 2007, Cell calcium.

[20]  M Jaffar,et al.  Calcium signalling and pancreatic cell death: apoptosis or necrosis? , 2007, Cell Death and Differentiation.

[21]  M. Kreft,et al.  Subnanometer Fusion Pores in Spontaneous Exocytosis of Peptidergic Vesicles , 2007, The Journal of Neuroscience.

[22]  I. Prior,et al.  Activation of trypsinogen in large endocytic vacuoles of pancreatic acinar cells , 2007, Proceedings of the National Academy of Sciences.

[23]  P. Banks,et al.  Acute pancreatitis: bench to the bedside. , 2007, Gastroenterology.

[24]  M. Lerch,et al.  Why does pancreatic overstimulation cause pancreatitis? , 2007, Annual review of physiology.

[25]  O. Gerasimenko,et al.  Bile Acids Induce Ca2+ Release from Both the Endoplasmic Reticulum and Acidic Intracellular Calcium Stores through Activation of Inositol Trisphosphate Receptors and Ryanodine Receptors* , 2006, Journal of Biological Chemistry.

[26]  O. Petersen,et al.  Failure of calcium microdomain generation and pathological consequences. , 2006, Cell calcium.

[27]  JoAnn Buchanan,et al.  The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER–plasma membrane junctions , 2006, The Journal of cell biology.

[28]  A. Stahl,et al.  Protein-mediated fatty acid uptake: novel insights from in vivo models. , 2006, Physiology.

[29]  J. Neoptolemos,et al.  Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis. , 2006, Gastroenterology.

[30]  O. Petersen,et al.  Ca2+ signalling and pancreatitis: effects of alcohol, bile and coffee. , 2006, Trends in pharmacological sciences.

[31]  O. Petersen,et al.  NAADP, cADPR and IP3 all release Ca2+ from the endoplasmic reticulum and an acidic store in the secretory granule area , 2006, Journal of Cell Science.

[32]  K. Mikoshiba,et al.  IP3 Receptor Types 2 and 3 Mediate Exocrine Secretion Underlying Energy Metabolism , 2005, Science.

[33]  O. Petersen Ca2+ signalling and Ca2+-activated ion channels in exocrine acinar cells. , 2005, Cell calcium.

[34]  J. Putney,et al.  Store-operated calcium channels. , 2005, Physiological reviews.

[35]  M. Hayden,et al.  Long-term correction of murine lipoprotein lipase deficiency with AAV1-mediated gene transfer of the naturally occurring LPL(S447X) beneficial mutation. , 2004, Human gene therapy.

[36]  Haruo Kasai,et al.  Stabilization of Exocytosis by Dynamic F-actin Coating of Zymogen Granules in Pancreatic Acini* , 2004, Journal of Biological Chemistry.

[37]  J. Neoptolemos,et al.  Ethanol toxicity in pancreatic acinar cells: mediation by nonoxidative fatty acid metabolites. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Myriam Gorospe,et al.  Calorie Restriction Promotes Mammalian Cell Survival by Inducing the SIRT1 Deacetylase , 2004, Science.

[39]  A. Klatsky,et al.  Smoking, Coffee, and Pancreatitis , 2004, American Journal of Gastroenterology.

[40]  K. Yano,et al.  NAADP mobilizes Ca2+ from a thapsigargin-sensitive store in the nuclear envelope by activating ryanodine receptors , 2003, The Journal of cell biology.

[41]  D. Keire,et al.  CCK-58 is the only detectable endocrine form of cholecystokinin in rat. , 2003, American journal of physiology. Gastrointestinal and liver physiology.

[42]  P. Bernardi,et al.  Effects of fatty acids on mitochondria: implications for cell death. , 2002, Biochimica et biophysica acta.

[43]  O. Petersen Cation Channels: Homing in on the Elusive CAN Channels , 2002, Current Biology.

[44]  J. Hoek,et al.  Alcohol and mitochondria: a dysfunctional relationship. , 2002, Gastroenterology.

[45]  Min Goo Lee,et al.  Transporter-mediated bile acid uptake causes Ca2+-dependent cell death in rat pancreatic acinar cells. , 2002, Gastroenterology.

[46]  O. Petersen,et al.  Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers , 2002, The EMBO journal.

[47]  B. Ji,et al.  Human pancreatic acinar cells lack functional responses to cholecystokinin and gastrin. , 2001, Gastroenterology.

[48]  C Vaillant,et al.  Calcium-dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  H Lippert,et al.  Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. , 2000, The Journal of clinical investigation.

[50]  M. Lerch,et al.  The role of intracellular calcium signaling in premature protease activation and the onset of pancreatitis. , 2000, The American journal of pathology.

[51]  K. Lewandrowski,et al.  Pancreatic injury in rats induced by fatty acid ethyl ester, a nonoxidative metabolite of alcohol. , 1997, Gastroenterology.

[52]  E. Krause,et al.  Depletion of Intracellular Calcium Stores Activates a Calcium Conducting Nonselective Cation Current in Mouse Pancreatic Acinar Cells* , 1996, The Journal of Biological Chemistry.

[53]  S. Muallem,et al.  Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells , 1995, The Journal of cell biology.

[54]  L. Johnson,et al.  Physiology of the gastrointestinal tract , 2012 .

[55]  O. Petersen,et al.  Caffeine inhibits the agonist-evoked cytosolic Ca2+ signal in mouse pancreatic acinar cells by blocking inositol trisphosphate production. , 1992, The Journal of biological chemistry.

[56]  J. Cameron,et al.  Changes in High‐energy Phosphate Metabolism and Cell Morphology in Four Models of Acute Experimental Pancreatitis , 1991, Annals of surgery.

[57]  O. Petersen,et al.  Receptor-activated cytoplasmic Ca2+ spiking mediated by inositol trisphosphate is due to Ca2+-induced Ca2+ release , 1990, Cell.

[58]  F. Thévenod,et al.  Modulation of intracellular free Ca2+ concentration by IP3-sensitive and IP3-insensitive nonmitochondrial Ca2+ pools. , 1989, Cell calcium.

[59]  E. Laposata,et al.  Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. , 1986, Science.

[60]  B. Sobel,et al.  Mitochondrial dysfunction induced by fatty acid ethyl esters, myocardial metabolites of ethanol. , 1983, The Journal of clinical investigation.

[61]  O. Petersen,et al.  Transport of calcium in the perfused submandibular gland of the cat , 1972, The Journal of physiology.

[62]  J. A. Peters,et al.  Transient receptor potential cation channels in disease. , 2007, Physiological reviews.

[63]  H. Ishiguro,et al.  Mechanisms of bicarbonate secretion in the pancreatic duct. , 2005, Annual review of physiology.

[64]  E. Bayerdörffer,et al.  Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas , 2005, The Journal of Membrane Biology.

[65]  O. Petersen,et al.  Secretion of fluid and amylase in the perfused rat pancreas. , 1977, The Journal of physiology.