Dust generation mechanisms under powerful plasma impacts to the tungsten surfaces in ITER ELM simulation experiments

[1]  Y. Martynenko,et al.  Mobilization of dust and exfoliation of erosion product films in tokamaks , 2012 .

[2]  Andreas Bürger,et al.  Evolution of tungsten degradation under combined high cycle edge-localized mode and steady-state heat loads , 2011 .

[3]  I. Garkusha,et al.  Estimation of the dust production rate from the tungsten armour after repetitive ELM-like heat loads , 2011 .

[4]  J. Linke,et al.  Simulation of ITER edge-localized modes' impacts on the divertor surfaces within plasma accelerators , 2011 .

[5]  F. Dabbene,et al.  F4E R&D programme and results on in-vessel dust and tritium , 2011 .

[6]  A. V. Medvedev,et al.  Performance of deformed tungsten under ELM-like plasma exposures in QSPA Kh-50 , 2011 .

[7]  S. I. Krasheninnikov,et al.  Dust in magnetic fusion devices , 2011 .

[8]  L. Khimchenko,et al.  Nanostructures in controlled thermonuclear fusion devices , 2011 .

[9]  V. I. Tereshin,et al.  Residual stresses in tungsten under exposures with ITER ELM-like plasma loads , 2009 .

[10]  V. I. Tereshin,et al.  The latest results from ELM-simulation experiments in plasma accelerators , 2009 .

[11]  V. I. Tereshin,et al.  Experimental study of plasma energy transfer and material erosion under ELM-like heat loads , 2009 .

[12]  A. Loarte,et al.  Experimental and theoretical investigation of droplet emission from tungsten melt layer , 2009 .

[13]  V. I. Tereshin,et al.  Damage to preheated tungsten targets after multiple plasma impacts simulating ITER ELMs , 2009 .

[14]  E. Giovannozzi,et al.  In situ dust detection in fusion devices , 2008 .

[15]  V. I. Tereshin,et al.  Effect of preheating on the damage to tungsten targets after repetitive ITER ELM-like heat loads , 2007 .

[16]  W. Fundamenski,et al.  Transient heat loads in current fusion experiments, extrapolation to ITER and consequences for its operation , 2007 .