C2 subdivision over triangulations with one extraordinary point
暂无分享,去创建一个
David Levin | Mina Teicher | Adi Levin | Avi Zulti | D. Levin | M. Teicher | A. Levin | Avi Zulti | D. Levin
[1] C. D. Boor,et al. Quasiinterpolants and Approximation Power of Multivariate Splines , 1990 .
[2] J. Tsitsiklis,et al. The boundedness of all products of a pair of matrices is undecidable , 2000 .
[3] R. Jia. Subdivision Schemes in L p Spaces , 1995 .
[4] K. Jetter,et al. Multivariate Approximation and Interpolation , 1990 .
[5] David Levin,et al. Using Laurent polynomial representation for the analysis of non‐uniform binary subdivision schemes , 1999, Adv. Comput. Math..
[6] C. D. Boor,et al. Box splines , 1993 .
[7] Thierry BLUzAbstract. SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .
[8] Bin Han,et al. Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..
[9] J. Warren,et al. Subdivision methods for geometric design , 1995 .
[10] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[11] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[12] Hans Hagen,et al. Curve and Surface Design , 1992 .
[13] D. Levin,et al. Analysis of quasi-uniform subdivision , 2003 .
[14] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[15] Joe Warren,et al. Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .
[16] Rong-Qing Jia,et al. Subdivision schemes inLp spaces , 1995, Adv. Comput. Math..
[17] A. Cohen,et al. Regularité des bases d'ondelettes et mesures ergodiques , 1992 .
[18] Adi Levin,et al. Filling N-sided Holes Using Combined Subdivision Schemes , 2000 .
[19] I. Daubechies,et al. Regularity of Irregular Subdivision , 1999 .
[20] I. Daubechies,et al. Wavelets on irregular point sets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[21] C. Micchelli,et al. Computation of Curves and Surfaces , 1990 .
[22] M. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1978 .
[23] A. Levin,et al. Polynomial generation and quasi-interpolation in stationary non-uniform subdivision , 2003, Comput. Aided Geom. Des..
[24] U. Reif. TURBS—Topologically Unrestricted Rational B-Splines , 1998 .
[25] Joe Warren,et al. Binary Subdivision Schemes for Functions over Irregular Knot Sequences , 1995 .
[26] Hartmut Prautzsch,et al. A G2-Subdivision Algorithm , 1996, Geometric Modelling.
[27] Denis Z orin. Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .
[28] C. Micchelli,et al. Stationary Subdivision , 1991 .
[29] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[30] Igor Guskov,et al. Multivariate Subdivision Schemes And Divided Differences , 1998 .
[31] Josef Hoschek,et al. Handbook of Computer Aided Geometric Design , 2002 .
[32] Amos Ron,et al. The Exponentials in the Span of the Multiinteger Translates of a Compactly Supported Function; Quasiinterpolation and Approximation Order , 1992 .
[33] G. Umlauf. Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .
[34] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[35] Hartmut Prautzsch,et al. Freeform splines , 1997, Computer Aided Geometric Design.
[36] Ulrich Reif,et al. Degree estimates for Ck‐piecewise polynomial subdivision surfaces , 1999, Adv. Comput. Math..