C2 subdivision over triangulations with one extraordinary point

This paper presents a new subdivision scheme that operates over an infinite triangulation, which is regular except for a single extraordinary vertex. The scheme is based on the quartic three-directional Box-spline scheme, and is guaranteed to generate C^2 limit functions whenever the valency n of the extraordinary vertex is in the range 4=

[1]  C. D. Boor,et al.  Quasiinterpolants and Approximation Power of Multivariate Splines , 1990 .

[2]  J. Tsitsiklis,et al.  The boundedness of all products of a pair of matrices is undecidable , 2000 .

[3]  R. Jia Subdivision Schemes in L p Spaces , 1995 .

[4]  K. Jetter,et al.  Multivariate Approximation and Interpolation , 1990 .

[5]  David Levin,et al.  Using Laurent polynomial representation for the analysis of non‐uniform binary subdivision schemes , 1999, Adv. Comput. Math..

[6]  C. D. Boor,et al.  Box splines , 1993 .

[7]  Thierry BLUzAbstract SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .

[8]  Bin Han,et al.  Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..

[9]  J. Warren,et al.  Subdivision methods for geometric design , 1995 .

[10]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[11]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[12]  Hans Hagen,et al.  Curve and Surface Design , 1992 .

[13]  D. Levin,et al.  Analysis of quasi-uniform subdivision , 2003 .

[14]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[15]  Joe Warren,et al.  Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .

[16]  Rong-Qing Jia,et al.  Subdivision schemes inLp spaces , 1995, Adv. Comput. Math..

[17]  A. Cohen,et al.  Regularité des bases d'ondelettes et mesures ergodiques , 1992 .

[18]  Adi Levin,et al.  Filling N-sided Holes Using Combined Subdivision Schemes , 2000 .

[19]  I. Daubechies,et al.  Regularity of Irregular Subdivision , 1999 .

[20]  I. Daubechies,et al.  Wavelets on irregular point sets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  C. Micchelli,et al.  Computation of Curves and Surfaces , 1990 .

[22]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[23]  A. Levin,et al.  Polynomial generation and quasi-interpolation in stationary non-uniform subdivision , 2003, Comput. Aided Geom. Des..

[24]  U. Reif TURBS—Topologically Unrestricted Rational B-Splines , 1998 .

[25]  Joe Warren,et al.  Binary Subdivision Schemes for Functions over Irregular Knot Sequences , 1995 .

[26]  Hartmut Prautzsch,et al.  A G2-Subdivision Algorithm , 1996, Geometric Modelling.

[27]  Denis Z orin Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .

[28]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[29]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[30]  Igor Guskov,et al.  Multivariate Subdivision Schemes And Divided Differences , 1998 .

[31]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[32]  Amos Ron,et al.  The Exponentials in the Span of the Multiinteger Translates of a Compactly Supported Function; Quasiinterpolation and Approximation Order , 1992 .

[33]  G. Umlauf Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .

[34]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[35]  Hartmut Prautzsch,et al.  Freeform splines , 1997, Computer Aided Geometric Design.

[36]  Ulrich Reif,et al.  Degree estimates for Ck‐piecewise polynomial subdivision surfaces , 1999, Adv. Comput. Math..