Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys

Experimental information on the transformation temperatures and the thermodynamic properties of the near-equiatomic TiNi alloys is analyzed. Special attention is paid to the estimation of T0 temperature from experimental Ms and Af temperatures. The properties of the TiNi low-temperature phase (B19′) are evaluated from selected experimental data by using a two-sublattice model. The Ti-Ni phase diagram including the B19′ phase is then calculated. It reveals that the equiatomic TiNi parent phase (B2) remains stable from high temperatures until 370 K, and then the B19′ phase becomes thermodynamically stable as a linear compound under 370 K. Thermodynamic quantities such as the T0 temperature and transformation enthalpy are also calculated and compared with experimental data. Further, the Ms temperature is predicted and compared with data from different sources.

[1]  Jordi Ortín,et al.  Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations , 1988 .

[2]  G. B. Olson,et al.  Thermoelastic behavior in martensitic transformations , 1975 .

[3]  C. M. Wayman,et al.  Characteristic temperatures and other properties of thermoelastic martensites , 1974 .

[4]  Shuichi Miyazaki,et al.  Deformation and transition behavior associated with theR-phase in Ti-Ni alloys , 1986 .

[5]  K. Eckelmeyer The effect of alloying on the shape memory phenomenon in nitinol , 1976 .

[6]  A. P. Jardine,et al.  Calorimetric techniques for the evaluation of thermal efficiencies of shape memory alloys , 1989 .

[7]  A. Dinsdale SGTE data for pure elements , 1991 .

[8]  E. D. West,et al.  Anomalous Heat Capacity of TiNi , 1967 .

[9]  Morris Cohen,et al.  On the thermodynamics of thermoelastic martensitic transformations , 1979 .

[10]  W. J. Buehler,et al.  Crystal Structure and a Unique ``Martensitic'' Transition of TiNi , 1965 .

[11]  L. Haiyan,et al.  A reassessment of the TiNi system , 1993 .

[12]  L. Kaufman,et al.  Coupled phase diagrams and thermochemical data for transition metal binary systems-VI , 1978 .

[13]  Minoru Nishida,et al.  Precipitation processes in near-equiatomic TiNi shape memory alloys , 1986 .

[14]  G. B. Olson,et al.  Reply to "On the equilibrium temperature in thermoelastic martensitic transformations" , 1977 .

[15]  B. Predel,et al.  Cp and fractal phase transformation in the shape memory alloy Ni52Ti , 1991 .

[16]  Shuichi Miyazaki,et al.  Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy , 1981 .

[17]  R. J. Wasilewski,et al.  Homogeneity range and the martensitic transformation in TiNi , 1971 .

[18]  K. N. Melton,et al.  The mechanical properties of NiTi-based shape memory alloys , 1981 .

[19]  Jan-Olof Andersson,et al.  The Thermo-Calc databank system☆ , 1985 .

[20]  C. M. Wayman,et al.  On the equilibrium temperature in thermoelastic martensitic transformations , 1977 .

[21]  Joanne L. Murray,et al.  Phase diagrams of binary titanium alloys , 1987 .

[22]  G. Purdy,et al.  Calorimetric Study of a Diffusionless Phase Transition in TiNi , 1966 .

[23]  S. R. Butler,et al.  On the Martensitic Transformation in TiNi , 1967 .

[24]  R. Wasilewski B.C.C. stacking fault energies , 1967 .

[25]  O. Mercier,et al.  Kinetics and thermodynamics of the shape‐memory effect in martensitic NiTi and (Ni1−xCux)Ti alloys , 1979 .