Optically responsive supramolecular polymer glasses

The reversible and dynamic nature of non-covalent interactions between the constituting building blocks renders many supramolecular polymers stimuli-responsive. This was previously exploited to create thermally and optically healable polymers, but it proved challenging to achieve high stiffness and good healability. Here we present a glass-forming supramolecular material that is based on a trifunctional low-molecular-weight monomer ((UPyU)3TMP). Carrying three ureido-4-pyrimidinone (UPy) groups, (UPyU)3TMP forms a dynamic supramolecular polymer network, whose properties are governed by its cross-linked architecture and the large content of the binding motif. This design promotes the formation of a disordered glass, which, in spite of the low molecular weight of the building block, displays typical polymeric behaviour. The material exhibits a high stiffness and offers excellent coating and adhesive properties. On account of reversible dissociation and the formation of a low-viscosity liquid upon irradiation with ultraviolet light, rapid optical healing as well as (de)bonding on demand is possible.

[1]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[2]  Lee Luong,et al.  Toughening polymer adhesives using nanosized elastomeric particles , 2014 .

[3]  E. W. Meijer,et al.  Scale-up of the synthesis of ureidopyrimidinone functionalized telechelic poly(ethylenebutylene) , 2003 .

[4]  Christoph Weder,et al.  Low-power photon upconversion in organic glasses , 2014 .

[5]  E. W. Meijer,et al.  Supramolecular polymers at work , 2004 .

[6]  C. Weder,et al.  Mechanochemistry with metallosupramolecular polymers. , 2014, Journal of the American Chemical Society.

[7]  Bo Zheng,et al.  Stimuli-responsive supramolecular polymeric materials. , 2012, Chemical Society reviews.

[8]  E. W. Meijer,et al.  Supramolecular Polymer Materials: Chain Extension of Telechelic Polymers Using a Reactive Hydrogen-Bonding Synthon** , 2000 .

[9]  Huan Zhang,et al.  Self-healing metallo-supramolecular polymers from a ligand macromolecule synthesized via copper-catalyzed azide–alkyne cycloaddition and thiol–ene double “click” reactions , 2014 .

[10]  T. Maris,et al.  Molecular Tectonics. Disruption of Self-Association in Melts Derived from Hydrogen-Bonded Solids , 2004 .

[11]  Albert P H J Schenning,et al.  Supramolecular polymerization. , 2009, Chemical reviews.

[12]  R. Sijbesma,et al.  Supramolecular Copolyesters with Tunable Properties , 2007 .

[13]  Henk M. Janssen,et al.  Self‐Healing Supramolecular Polymers In Action , 2012 .

[14]  Stuart J. Rowan,et al.  Inherently Photohealable and Thermal Shape-Memory Polydisulfide Networks. , 2013, ACS macro letters.

[15]  E. J. Foster,et al.  Healable supramolecular polymer solids , 2015 .

[16]  Aaron M Kushner,et al.  Multiphase design of autonomic self-healing thermoplastic elastomers. , 2012, Nature chemistry.

[17]  E. W. Meijer,et al.  A modular and supramolecular approach to bioactive scaffolds for tissue engineering , 2005, Nature materials.

[18]  C. Weder,et al.  Light-induced bonding and debonding with supramolecular adhesives. , 2014, ACS applied materials & interfaces.

[19]  R. Hoogenboom Hard autonomous self-healing supramolecular materials--a contradiction in terms? , 2012, Angewandte Chemie.

[20]  Bruno C. Hancock,et al.  Characteristics and significance of the amorphous state in pharmaceutical systems. , 1997, Journal of pharmaceutical sciences.

[21]  S. Rowan,et al.  Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. , 2011, Nature materials.

[22]  Huan Zhang,et al.  Mechanoresponsive Healable Metallosupramolecular Polymers , 2013 .

[23]  E. W. Meijer,et al.  Supramolecular Polymers , 2000 .

[24]  A. Griffin,et al.  Thermoreversible Supramolecular Networks with Polymeric Properties , 1995 .

[25]  Christoph Weder,et al.  Optically healable polymers. , 2013, Chemical Society reviews.

[26]  D. Tyler,et al.  Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis , 2008, Science.

[27]  E. J. Foster,et al.  Reinforcement of Optically Healable Supramolecular Polymers with Cellulose Nanocrystals , 2014 .

[28]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[29]  Christoph Weder,et al.  Light-Healable Supramolecular Nanocomposites Based on Modified Cellulose Nanocrystals. , 2013, ACS macro letters.

[30]  Justin R. Kumpfer,et al.  Optically healable supramolecular polymers , 2011, Nature.

[31]  W. Binder,et al.  Self-Healing in Supramolecular Polymers. , 2018, Macromolecular rapid communications.

[32]  E. W. Meijer,et al.  Supramolecular polymers from linear telechelic siloxanes with quadruple- hydrogen- bonded units , 1999 .

[33]  E. W. Meijer,et al.  Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. , 1997, Science.

[34]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[35]  Yasuhiko Shirota,et al.  Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications , 2005 .