Efficient and Cheap Bounds for ( Standard ) Quadratic Optimization

A standard quadratic optimization problem (StQP) consists in minimizing a quadratic form over a simplex. A number of problems can be transformed into a StQP, including the general quadratic problem over a polytope and the maximum clique problem in a graph. In this paper we present several polynomial-time bounds for StQP ranging from very simple and cheap ones to more complex and tight constructions. The main tools employed in the conception and analysis of most bounds are Semidefinite Programming and decomposition of the objective function into a sum of two quadratic functions, each of which is easy to minimize. We provide a complete diagram of the dominance, incomparability, or equivalence relations among the bounds proposed in this and in previous works. In particular, we show that one of our new bounds dominates all the others. Furthermore, a specialization of such bound dominates Schrijver’s improvement of Lovász’s θ function bound for the maximum size of a clique in a graph.

[1]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[2]  P. H. Diananda On non-negative forms in real variables some or all of which are non-negative , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[4]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[5]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[6]  Alexander Schrijver,et al.  A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.

[7]  J. Gower Properties of Euclidean and non-Euclidean distance matrices , 1985 .

[8]  H. Tuy A General Deterministic Approach to Global Optimization VIA D.C. Programming , 1986 .

[9]  Toshihide Ibaraki,et al.  Resource allocation problems - algorithmic approaches , 1988, MIT Press series in the foundations of computing.

[10]  F. Tardella On the equivalence between some discrete and continuous optimization problems , 1991 .

[11]  P. Burridge,et al.  A Very Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix , 1991 .

[12]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[13]  Donald E. Knuth The Sandwich Theorem , 1994, Electron. J. Comb..

[14]  H. Markowitz The general mean-variance portfolio selection problem , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[15]  Panos M. Pardalos,et al.  Continuous Characterizations of the Maximum Clique Problem , 1997, Math. Oper. Res..

[16]  Immanuel M. Bomze,et al.  Evolution towards the Maximum Clique , 1997, J. Glob. Optim..

[17]  B. Ding,et al.  Global and Local Quadratic Minimization , 1997, J. Glob. Optim..

[18]  B. M. Pötscher,et al.  Dynamic Nonlinear Econometric Models: Asymptotic Theory , 1997 .

[19]  Immanuel M. Bomze,et al.  On Standard Quadratic Optimization Problems , 1998, J. Glob. Optim..

[20]  Ivo Nowak A New Semidefinite Programming Bound for Indefinite Quadratic Forms Over a Simplex , 1999, J. Glob. Optim..

[21]  Yurii Nesterov Global quadratic optimization on the sets with simplex structure , 1999 .

[22]  Immanuel M. Bomze Copositivity Aspects of Standard Quadratic Optimization Problems , 2000 .

[23]  Etienne de Klerk,et al.  On Copositive Programming and Standard Quadratic Optimization Problems , 2000, J. Glob. Optim..

[24]  I. Bomze Portfolio selection via replicator dynamics and projections of indefinite estimated covariances , 2000 .

[25]  Mirjam Dür A class of problems where dual bounds beat underestimation bounds , 2002, J. Glob. Optim..

[26]  Nikolaos V. Sahinidis,et al.  Convex extensions and envelopes of lower semi-continuous functions , 2002, Math. Program..

[27]  Etienne de Klerk,et al.  Solving Standard Quadratic Optimization Problems via Linear, Semidefinite and Copositive Programming , 2002, J. Glob. Optim..

[28]  Etienne de Klerk,et al.  Approximation of the Stability Number of a Graph via Copositive Programming , 2002, SIAM J. Optim..

[29]  Immanuel M. Bomze,et al.  Branch-and-bound approaches to standard quadratic optimization problems , 2002, J. Glob. Optim..

[30]  Fabio Tardella Connections between continuous and combinatorial optimization problems through an extension of the fundamental theorem of Linear Programming , 2004, Electron. Notes Discret. Math..

[31]  Marco Locatelli,et al.  Undominated d.c. Decompositions of Quadratic Functions and Applications to Branch-and-Bound Approaches , 2004, Comput. Optim. Appl..

[33]  Samuel Burer,et al.  D.C. Versus Copositive Bounds for Standard QP , 2005, J. Glob. Optim..

[34]  Leo Liberti,et al.  Introduction to Global Optimization , 2006 .

[35]  Franz Rendl,et al.  Semidefinite programming relaxations for graph coloring and maximal clique problems , 2007, Math. Program..

[36]  J. Jeffry Howbert,et al.  The Maximum Clique Problem , 2007 .

[37]  Javier Peña,et al.  Computing the Stability Number of a Graph Via Linear and Semidefinite Programming , 2007, SIAM J. Optim..