Control of quantum dynamics: Concepts, procedures and future prospects

Publisher Summary This chapter presents an overview of the current state of attempts to control quantum phenomena. The control process consists of steering the appropriate observable or wavefunction from the initial state to a final desired state. In the laboratory this is generally done by time-varying laser fields. Special emphasis is given to the conceptual, algorithmic and numerical aspects of the subject. In envisioning further advances along these lines it is very important to explicitly consider the special capabilities of performing massive numbers of control experiments over a short laboratory time. In many respects the field of control over quantum phenomena is a field which is young with the bulk of its developments lying ahead. It is hoped that this chapter provides some stimulus to push the field further.

[1]  David J. Tannor,et al.  Laser cooling of internal degrees of freedom. II , 1997 .

[2]  P. Bucksbaum,et al.  Controlling the shape of a quantum wavefunction , 1999, Nature.

[3]  Daniel A. Lidar,et al.  CONCATENATING DECOHERENCE-FREE SUBSPACES WITH QUANTUM ERROR CORRECTING CODES , 1998, quant-ph/9809081.

[4]  Huang,et al.  Inverse quantum-mechanical control: A means for design and a test of intuition. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[5]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[6]  Michael Athans,et al.  Optimal Control , 1966 .

[7]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[8]  Emil Wolf,et al.  COHERENCE AND QUANTUM OPTICS , 1973 .

[9]  Herschel Rabitz,et al.  Attaining optimal controls for manipulating quantum systems , 2003 .

[10]  Herschel Rabitz,et al.  Unified formulation for control and inversion of molecular dynamics , 1995 .

[11]  Gg Balint-Kurti,et al.  Lecture notes in Chemistry , 2000 .

[12]  H. Rabitz,et al.  Wavefunction controllability in quantum systems , 2003 .

[13]  J. Dussault,et al.  Optimal pulse shaping for coherent control by the penalty algorithm , 1994 .

[14]  Sophie Schirmer,et al.  KINEMATICAL BOUNDS ON OPTIMIZATION OF OBSERVABLES FOR QUANTUM SYSTEMS , 1998 .

[15]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[16]  Gustav Gerber,et al.  Controlling the Femtochemistry of Fe(CO)5 , 1999 .

[17]  David J. Tannor,et al.  Laser cooling of internal degrees of freedom of molecules by dynamically trapped states , 1999 .

[18]  H. Rabitz,et al.  Assessing optimality and robustness of control over quantum dynamics , 1998 .

[19]  Ramakrishna,et al.  Controllability of molecular systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[20]  E. Kay,et al.  Graph Theory. An Algorithmic Approach , 1975 .

[21]  Herschel Rabitz,et al.  Optimal Dynamic Discrimination of Similar Molecules through Quantum Learning Control , 2002 .

[22]  Ronald R. Mohler,et al.  Natural Bilinear Control Processes , 1970, IEEE Trans. Syst. Sci. Cybern..

[23]  H Hofmann,et al.  Quantum control by compensation of quantum fluctuations. , 1998, Optics express.

[24]  S. G. Schirmer,et al.  Efficient Algorithm for Optimal Control of Mixed-State Quantum Systems , 1999 .

[25]  G. Paramonov,et al.  Isomerizations controlled by ultrashort infrared laser pulses: model simulations for the inversion of ligands (H) in the double-well potential of an organometallic compound, [(C5H5)(CO)2FePH2] , 1991 .

[26]  Mathias Fink,et al.  Time-Reversed Acoustics , 1999 .

[27]  Gabriel Turinici,et al.  On the controllability of bilinear quantum systems , 2000 .

[28]  A. Steane,et al.  Introduction to quantum error correction , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Yukiyoshi Ohtsuki,et al.  QUANTUM CONTROL OF NUCLEAR WAVE PACKETS BY LOCALLY DESIGNED OPTIMAL PULSES , 1998 .

[30]  Herschel Rabitz,et al.  Noniterative algorithms for finding quantum optimal controls , 1999 .

[31]  Nature of the quantum interference in electromagnetic-field-induced control of absorption , 1997 .

[32]  H. Carmichael Stochastic Schrödinger Equations: What They Mean and What They Can Do , 1996 .

[33]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[34]  M. Shapiro,et al.  Coherence chemistry: controlling chemical reactions [with lasers] , 1989 .

[35]  H. Carmichael An open systems approach to quantum optics , 1993 .

[36]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[37]  Jerrold E. Marsden,et al.  Controllability for Distributed Bilinear Systems , 1982 .

[38]  Michael J. Davis,et al.  Comparisons of classical and quantum dynamics for initially localized states , 1984 .

[39]  Herschel Rabitz,et al.  Incorporating physical implementation concerns into closed loop quantum control experiments , 2000 .

[40]  Dispersion-free wave packets and feedback solitonic motion in controlled quantum dynamics , 1997 .

[41]  Herschel Rabitz,et al.  Competitive tracking of molecular objectives described by quantum mechanics , 1995 .

[42]  G. Lamb Elements of soliton theory , 1980 .

[43]  Stuart A. Rice,et al.  Control of selectivity of chemical reaction via control of wave packet evolution , 1985 .

[44]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[45]  QUANTUM CONTROL IN QUANTUM WELLS , 1998 .

[46]  D. D'Alessandro,et al.  Notions of controllability for quantum mechanical systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[47]  Kevin K. Lehmann,et al.  Optimal design of external fields for controlling molecular motion: application to rotation , 1990 .

[48]  K. Yamashita,et al.  QUANTUM CONTROL OF PHOTODISSOCIATION WAVEPACKETS , 1999 .

[49]  V. A. Apkarian,et al.  Quantum control of I2 in the gas phase and in condensed phase solid Kr matrix , 1997 .

[50]  R. Silbey,et al.  Quantum control for arbitrary linear and quadratic potentials , 1998 .

[51]  H Rabitz,et al.  Optimal control of molecular motion: design, implementation, and inversion. , 2000, Accounts of chemical research.

[52]  H. Rabitz,et al.  Optimal control of population transfer in an optically dense medium , 1996 .

[53]  Holger F. Hofmann,et al.  Quantum control of atomic systems by homodyne detection and feedback , 1998 .

[54]  Emily Weiss,et al.  Achieving the laboratory control of quantum dynamics phenomena using nonlinear functional maps , 2001 .

[55]  A. I. Solomon,et al.  Complete controllability of finite-level quantum systems , 2001 .

[56]  D. Vitali,et al.  Using parity kicks for decoherence control , 1998, quant-ph/9808055.

[57]  Vladimir B. Braginsky,et al.  Quantum Measurement , 1992 .

[58]  U. Keller,et al.  Adaptive feedback control of ultrafast semiconductor nonlinearities , 2000 .

[59]  Stuart A. Rice,et al.  Optimal control of product selectivity in the reations of polyatomic molecules: a reduced space analysis , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[60]  Minh Q. Phan,et al.  A self-guided algorithm for learning control of quantum-mechanical systems , 1999 .

[61]  Eric G. Brown,et al.  Some Mathematical and Algorithmic Challenges in the Control of Quantum Dynamics Phenomena , 2002 .

[62]  Raymond Laflamme,et al.  Quantum Computers, Factoring, and Decoherence , 1995, Science.

[63]  Herschel Rabitz,et al.  The effect of control field and measurement imprecision on laboratory feedback control of quantum systems , 1994 .

[64]  I. Christov,et al.  Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays , 2000, Nature.

[65]  Claudio Altafini,et al.  Controllability of quantum mechanical systems by root space decomposition of su(N) , 2002 .

[66]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[67]  Yaron Silberberg,et al.  Coherent quantum control of two-photon transitions by a femtosecond laser pulse , 1998, Nature.

[68]  Vladislav V. Yakovlev,et al.  Feedback quantum control of molecular electronic population transfer , 1997 .

[69]  S. Rice,et al.  Controlling quantum wavepacket motion in reduced-dimensional spaces: reaction path analysis in optimal control of HCN isomerization , 1999 .

[70]  David J. Tannor,et al.  Laser cooling of molecular internal degrees of freedom by a series of shaped pulses , 1993 .

[71]  Milburn,et al.  Quantum theory of field-quadrature measurements. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[72]  M. Fink,et al.  Ultrasonic Focusing with Time Reversal Mirrors , 1996 .

[73]  Claude Le Bris,et al.  Contrôle optimal bilinéaire d'une équation de Schrödinger , 2000 .

[74]  K. Yamashita,et al.  Theoretical study on quantum control of photodissociation and photodesorption dynamics by femtosecond chirped laser pulses , 1999 .

[75]  Kent R. Wilson,et al.  Quantum control of dissipative systems: Exact solutions , 1997 .

[76]  David J. Tannor,et al.  On the interplay of control fields and spontaneous emission in laser cooling , 1999 .

[77]  H. Rabitz,et al.  Optimal control of selective vibrational excitation in harmonic linear chain molecules , 1988 .

[78]  David J. Tannor,et al.  Controlled dissociation of I2 via optical transitions between the X and B electronic states , 1993 .

[79]  Thomas Kailath,et al.  Linear Systems , 1980 .

[80]  K. Kulander,et al.  Laser-collision induced chemical reactions: A comparison of quantum mechanical and classical model results , 1981 .

[81]  Claude Le Bris,et al.  ON THE TIME-DEPENDENT HARTREE–FOCK EQUATIONS COUPLED WITH A CLASSICAL NUCLEAR DYNAMICS , 1999 .

[82]  Herschel Rabitz,et al.  Teaching lasers to control molecules in the presence of laboratory field uncertainty and measurement imprecision , 1993 .

[83]  Sophie Schirmer,et al.  Kinematical bounds on evolution and optimization of mixed quantum states , 1997 .

[84]  K. B. Whaley,et al.  Robustness of Decoherence-Free Subspaces for Quantum Computation , 1999 .

[85]  Herschel Rabitz,et al.  Robust optimal control theory for selective vibrational excitation in molecules : a worst case analysis , 1992 .

[86]  Quantum control of molecular wavepackets: An approximate analytic solution for the strong-response regime , 1999 .

[87]  Herschel Rabitz,et al.  Potential surfaces from the inversion of time dependent probability density data , 1999 .

[88]  H. Rabitz,et al.  Optimal control of the electric susceptibility of a molecular gas by designed nonresonant laser pulses of limited amplitude , 1993 .

[89]  Jianshu Cao,et al.  Using time-dependent rate equations to describe chirped pulse excitation in condensed phases , 1999 .

[90]  Herschel Rabitz,et al.  Optimal discrimination of multiple quantum systems: controllability analysis , 2004 .

[91]  S. Harris,et al.  ELECTROMAGNETICALLY INDUCED TRANSPARENCY IN ATOMS WITH HYPERFINE STRUCTURE , 1997 .

[92]  G. Harel,et al.  Complete Control of Hamiltonian Quantum Systems: Engineering of Floquet Evolution , 1999 .

[93]  Herschel Rabitz,et al.  Managing singular behavior in the tracking control of quantum dynamical observables , 1999 .

[94]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[95]  K. Hoki,et al.  Quantum Control of NaI Predissociation in Subpicosecond and Several-Picosecond Time Regimes , 1999 .

[96]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[97]  Kent R. Wilson,et al.  Creating and Detecting Shaped Rydberg Wave Packets , 1997 .

[98]  Marcos Dantus,et al.  Quantum control of the yield of a chemical reaction , 1998 .

[99]  Vladislav V. Yakovlev,et al.  Quantum Control of Population Transfer in Green Fluorescent Protein by Using Chirped Femtosecond Pulses , 1998 .

[100]  Herschel Rabitz,et al.  A RAPID MONOTONICALLY CONVERGENT ITERATION ALGORITHM FOR QUANTUM OPTIMAL CONTROL OVER THE EXPECTATION VALUE OF A POSITIVE DEFINITE OPERATOR , 1998 .

[101]  A. I. Solomon,et al.  Complete controllability of quantum systems , 2000, quant-ph/0010031.

[102]  Gabriel Turinici,et al.  Controllable quantities for bilinear quantum systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[103]  H Rabitz,et al.  Selective Bond Dissociation and Rearrangement with Optimally Tailored, Strong-Field Laser Pulses , 2001, Science.

[104]  André D. Bandrauk,et al.  LASER-INDUCED ALIGNMENT DYNAMICS OF HCN : ROLES OF THE PERMANENT DIPOLE MOMENT AND THE POLARIZABILITY , 1999 .

[105]  Michael Grønager,et al.  Real-time control of electronic motion: Application to NaI , 1998 .

[106]  Tzyh Jong Tarn,et al.  Invertibility of quantum-mechanical control systems , 1984, Mathematical systems theory.

[107]  H. Rabitz,et al.  RAPIDLY CONVERGENT ITERATION METHODS FOR QUANTUM OPTIMAL CONTROL OF POPULATION , 1998 .

[108]  F. Fairman Introduction to dynamic systems: Theory, models and applications , 1979, Proceedings of the IEEE.

[109]  Vladislav V. Yakovlev,et al.  Quantum control of NaI photodissociation reaction product states by ultrafast tailored light pulses , 1997 .

[110]  N. Schwentner,et al.  Extraction of potentials and dynamics from condensed phase pump–probe spectra: Application to I2 in Kr matrices , 1999 .

[111]  Jan Broeckhove,et al.  Time-dependent quantum molecular dynamics , 1992 .

[112]  M. Phan,et al.  Learning control of quantum-mechanical systems by laboratory identification of effective input-output maps , 1997 .

[113]  T. Hornung,et al.  Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain , 2000 .

[114]  H. Rabitz,et al.  Explicit generation of unitary transformations in a single atom or molecule , 2000 .

[115]  Stephen K. Gray,et al.  Classical and quantum mechanical studies of HF in an intense laser field , 1982 .

[116]  Gerber,et al.  Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses , 1998, Science.

[117]  Herschel Rabitz,et al.  Monotonically convergent algorithm for quantum optimal control with dissipation , 1999 .

[118]  Rabitz,et al.  Robust optimal control of quantum molecular systems in the presence of disturbances and uncertainties. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[119]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[120]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[121]  P. Drazin,et al.  Solitons: An Introduction , 1989 .

[122]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[123]  David J. Tannor,et al.  Control of Photochemical Branching: Novel Procedures for Finding Optimal Pulses and Global Upper Bounds , 1992 .

[124]  Rabitz,et al.  Optimally controlled quantum molecular dynamics: A perturbation formulation and the existence of multiple solutions. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[125]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[126]  Jianshu Cao,et al.  A simple physical picture for quantum control of wave packet localization , 1997 .

[127]  Wiseman Stochastic quantum dynamics of a continuously monitored laser. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[128]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[129]  Herschel Rabitz,et al.  Quantum wavefunction controllability , 2001 .

[130]  Samuel H. Tersigni,et al.  On using shaped light pulses to control the selectivity of product formation in a chemical reaction: An application to a multiple level system , 1990 .

[131]  Control of THz Emission from Stark Wave Packets , 1999 .

[132]  André D. Bandrauk,et al.  Two-frequency IR laser orientation of polar molecules. Numerical simulations for HCN , 1999 .

[133]  Rabitz,et al.  Optimal control of classical systems with explicit quantum-classical-difference reduction. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[134]  G. Guo,et al.  Suppressing environmental noise in quantum computation through pulse control , 1999 .

[135]  H. Rabitz,et al.  Optical control of molecular motion with robustness and application to vinylidene fluoride , 1990 .

[136]  C. Leforestier Competition between dissociation and exchange processes in a collinear A+BC collision: comparison of quantum and classical results , 1986 .