Tuning the Composition of Multicomponent Semiconductor Nanocrystals: The Case of I–III–VI Materials

Among the advantages of multicomponent nanocrystals is the possibility to adjust their electronic and optical properties with composition as well as size. However, the synthesis of multicomponent nanocrystals is challenging due to the presence of several metal precursors in the reaction mixture. This review takes I–III–VI semiconductor materials as an example class of multicomponent nanocrystals to highlight the underestimated importance of composition, which can affect the electronic and optical properties of nanocrystals as much as size. We discuss synthetic strategies, which enable the composition control, and show that the ability to separately choose nanocrystal size and nanocrystal composition can be beneficial for many optoelectronic and biomedical applications.

[1]  Hyun-Sik Kim,et al.  High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control , 2017 .

[2]  N. Makarov,et al.  Light Emission Mechanisms in CuInS2 Quantum Dots Evaluated by Spectral Electrochemistry , 2017 .

[3]  Hee Chang Yoon,et al.  Origin of highly efficient photoluminescence in AgIn5S8 nanoparticles. , 2017, Nanoscale.

[4]  Thomas Feurer,et al.  Progress in thin film CIGS photovoltaics – Research and development, manufacturing, and applications , 2017 .

[5]  Jia-Yaw Chang,et al.  Direct aqueous synthesis of quantum dots for high-performance AgInSe 2 quantum-dot-sensitized solar cell , 2017 .

[6]  Xiao Wei Sun,et al.  Heavy Metal Free Nanocrystals with Near Infrared Emission Applying in Luminescent Solar Concentrator , 2017 .

[7]  Lixin Cao,et al.  Rapid synthesis of CuInTe2 ultrathin nanoplates with enhanced photoelectrochemical properties. , 2017, Chemical communications.

[8]  D. Zahn,et al.  A Fine Size Selection of Brightly Luminescent Water-Soluble Ag–In–S and Ag–In–S/ZnS Quantum Dots , 2017 .

[9]  K. Ryan,et al.  Compound Copper Chalcogenide Nanocrystals. , 2017, Chemical reviews.

[10]  Q. Akkerman,et al.  Nearly Monodisperse Insulator Cs4PbX6 (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX3 Nanocrystals , 2017, Nano letters.

[11]  A. Pron,et al.  Luminophores of tunable colors from ternary Ag-In-S and quaternary Ag-In-Zn-S nanocrystals covering the visible to near-infrared spectral range. , 2017, Physical chemistry chemical physics : PCCP.

[12]  Hee Chang Yoon,et al.  Highly Efficient Green ZnAgInS/ZnInS/ZnS QDs by a Strong Exothermic Reaction for Down‐Converted Green and Tripackage White LEDs , 2017 .

[13]  Cai‐Feng Wang,et al.  Cu–In–S/ZnS Quantum Dots Embedded in Polyvinylpyrrolidone (PVP) Solids for White Light-Emitting Diodes (LEDs) , 2016 .

[14]  D. Zahn,et al.  Non-stoichiometric Cu–In–S@ZnS nanoparticles produced in aqueous solutions as light harvesters for liquid-junction photoelectrochemical solar cells , 2016 .

[15]  Lixin Zhu,et al.  Bandgap and Structure Engineering via Cation Exchange: From Binary Ag2S to Ternary AgInS2, Quaternary AgZnInS alloy and AgZnInS/ZnS Core/Shell Fluorescent Nanocrystals for Bioimaging. , 2016, ACS applied materials & interfaces.

[16]  V. Wood,et al.  Cu-In-Te and Ag-In-Te colloidal nanocrystals with tunable composition and size. , 2016, Chemical communications.

[17]  H. Ghosh,et al.  Involvement of Sub-Bandgap States in Subpicosecond Exciton and Biexciton Dynamics of Ternary AgInS2 Nanocrystals. , 2016, The journal of physical chemistry letters.

[18]  Philip Jackson,et al.  Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% , 2016 .

[19]  M. Carrière,et al.  Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. , 2016, Chemical reviews.

[20]  J. Hua,et al.  Composition-dependent photoluminescence properties of CuInS2/ZnS core/shell quantum dots , 2016 .

[21]  Kevin G. Stamplecoskie,et al.  Two Distinct Transitions in Cu(x)InS2 Quantum Dots. Bandgap versus Sub-Bandgap Excitations in Copper-Deficient Structures. , 2016, The journal of physical chemistry letters.

[22]  C. de Mello Donegá,et al.  Prospects of Colloidal Copper Chalcogenide Nanocrystals. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  Tatsuya Kameyama,et al.  Crystal phase-controlled synthesis of rod-shaped AgInTe2 nanocrystals for in vivo imaging in the near-infrared wavelength region. , 2016, Nanoscale.

[24]  L. Manna,et al.  Forging Colloidal Nanostructures via Cation Exchange Reactions , 2016, Chemical reviews.

[25]  Hao Zhang,et al.  Phosphine-free synthesis of Ag-In-Se alloy nanocrystals with visible emissions. , 2015, Nanoscale.

[26]  A. Wang,et al.  ZnS)x(Cu0.1InS1.55) heteronanocrystals with broadband emission as a single component for potential WLEDs , 2015 .

[27]  S. Bals,et al.  Near-Infrared Emitting CuInSe2/CuInS2 Dot Core/Rod Shell Heteronanorods by Sequential Cation Exchange , 2015, ACS nano.

[28]  Jung Ho Yu,et al.  Highly Efficient Copper-Indium-Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers. , 2015, ACS nano.

[29]  V. Wood,et al.  Independent Composition and Size Control for Highly Luminescent Indium-Rich Silver Indium Selenide Nanocrystals. , 2015, ACS nano.

[30]  H. Demir,et al.  The composition effect on the optical properties of aqueous synthesized Cu-In-S and Zn-Cu-In-S quantum dot nanocrystals. , 2015, Physical chemistry chemical physics : PCCP.

[31]  Yongtian Wang,et al.  Template Synthesis of CuInS2 Nanocrystals from In2S3 Nanoplates and Their Application as Counter Electrodes in Dye-Sensitized Solar Cells , 2015 .

[32]  William W. Yu,et al.  Photoluminescence of indium-rich copper indium sulfide quantum dots , 2015 .

[33]  A. Fitch,et al.  Silver Indium Telluride Semiconductors and Their Solid Solutions with Cadmium Indium Telluride: Structure and Physical Properties. , 2015, Inorganic chemistry.

[34]  Hee Chang Yoon,et al.  Synthesis and characterization of green Zn-Ag-In-S and red Zn-Cu-In-S quantum dots for ultrahigh color quality of down-converted white LEDs. , 2015, ACS applied materials & interfaces.

[35]  O. Stroyuk,et al.  Luminescent Ag-doped In2S3 nanoparticles stabilized by mercaptoacetate in water and glycerol , 2015, Journal of Nanoparticle Research.

[36]  M. Swihart,et al.  Controlling the Size, Shape, Phase, Band Gap, and Localized Surface Plasmon Resonance of Cu2–xS and CuxInyS Nanocrystals , 2015 .

[37]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[38]  Tongtong Jiang,et al.  Facile synthesis of water-soluble Zn-doped AgIn5S8/ZnS core/shell fluorescent nanocrystals and their biological application. , 2015, Inorganic chemistry.

[39]  S. Bals,et al.  Luminescent CuInS2 quantum dots by partial cation exchange in Cu2- xS nanocrystals , 2015 .

[40]  S. Bals,et al.  Luminescent CuInS 2 Quantum Dots by Partial Cation Exchange in Cu 2 − x S Nanocrystals , 2015 .

[41]  Jia-Yaw Chang,et al.  Development of nonstoichiometric CuInS₂ as a light-harvesting photoanode and catalytic photocathode in a sensitized solar cell. , 2014, ACS applied materials & interfaces.

[42]  R. Schaller,et al.  Efficient Carrier Multiplication in Colloidal CuInSe2 Nanocrystals. , 2014, The journal of physical chemistry letters.

[43]  Ru‐Shi Liu,et al.  Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index. , 2014, ACS applied materials & interfaces.

[44]  Yueqing Gu,et al.  Near-infrared broadly emissive AgInSe2/ZnS quantum dots for biomedical optical imaging , 2014 .

[45]  T. Omata,et al.  Electronic transition responsible for size-dependent photoluminescence of colloidal CuInS2 quantum dots , 2014 .

[46]  C. Allen,et al.  Air-stable near-infrared AgInSe₂ nanocrystals. , 2014, ACS nano.

[47]  Junchang Wang,et al.  Studies on highly luminescent AgInS2 and Ag–Zn–In–S quantum dots , 2014 .

[48]  Shenjie Li,et al.  Low-cost and gram-scale synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots in an electric pressure cooker. , 2014, Nanoscale.

[49]  S. Kuwabata,et al.  Photofunctional Materials Fabricated with Chalcopyrite-Type Semiconductor Nanoparticles Composed of AgInS2 and Its Solid Solutions. , 2014, The journal of physical chemistry letters.

[50]  J. Kolny-Olesiak,et al.  Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. , 2013, ACS applied materials & interfaces.

[51]  Jung Ho Yu,et al.  Copper-indium-selenide quantum dot-sensitized solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[52]  S. Kuwabata,et al.  Composition-Dependent Photoelectrochemical Properties of Nonstoichiometric Cu2ZnSnS4 Nanoparticles , 2013 .

[53]  Li-wei Liu,et al.  Optimizing the synthesis of red- and near-infrared CuInS2 and AgInS2 semiconductor nanocrystals for bioimaging. , 2013, The Analyst.

[54]  Jun‐Jie Zhu,et al.  Aqueous synthesis of color-tunable CuInS2/ZnS nanocrystals for the detection of human interleukin 6. , 2013, ACS applied materials & interfaces.

[55]  V. Wood,et al.  Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals , 2013, Chemistry of materials : a publication of the American Chemical Society.

[56]  E. Witt,et al.  Recent developments in colloidal synthesis of CuInSe2 nanoparticles. , 2013, Chemistry.

[57]  Shenjie Li,et al.  Green and facile synthesis of water-soluble Cu-In-S/ZnS core/shell quantum dots. , 2013, Inorganic chemistry.

[58]  K. Albe,et al.  Intrinsic point defects in CuInSe2and CuGaSe2as seen via screened-exchange hybrid density functional theory , 2013 .

[59]  Matthew G. Panthani,et al.  CuInSe2 Quantum Dot Solar Cells with High Open-Circuit Voltage. , 2013, The journal of physical chemistry letters.

[60]  P. Reiss,et al.  Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications , 2013 .

[61]  H. Hng,et al.  Olivine-type nanosheets for lithium ion battery cathodes. , 2013, ACS nano.

[62]  J. Noh,et al.  Fabrication of CuInTe2 and CuInTe(2-x)Se(x) ternary gradient quantum dots and their application to solar cells. , 2013, ACS nano.

[63]  A. Rogach,et al.  Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. , 2013, Chemical Society reviews.

[64]  Yuangang Zheng,et al.  Aqueous synthesis of highly luminescent AgInS₂-ZnS quantum dots and their biological applications. , 2013, Nanoscale.

[65]  Ki-Heon Lee,et al.  Preparation of a photo-degradation- resistant quantum dot–polymer composite plate for use in the fabrication of a high-stability white-light-emitting diode , 2013, Nanotechnology.

[66]  Huaibin Shen,et al.  Facile preparation of metal telluride nanocrystals using di-n-octylphosphine oxide (DOPO) as an air-stable and less toxic alternative to the common tri-alkylphosphines , 2012 .

[67]  L. Manna Strongly Fluorescent Quaternary Cu—In—Zn—S Nanocrystals Prepared from Cu1‐xInS2 Nanocrystals by Partial Cation Exchange. , 2012 .

[68]  Heesun Yang,et al.  Comparisons of the structural and optical properties of o-AgInS2, t-AgInS2, and c-AgIn5S8 nanocrystals and their solid-solution nanocrystals with ZnS , 2012 .

[69]  Ki-Bum Lee,et al.  Generation of a Library of Non‐Toxic Quantum Dots for Cellular Imaging and siRNA Delivery , 2012, Advanced materials.

[70]  S. Achilefu,et al.  High-Quality CuInS2/ZnS Quantum Dots for In vitro and In vivo Bioimaging , 2012 .

[71]  S. Kuwabata,et al.  Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles , 2012 .

[72]  Zhan'ao Tan,et al.  Highly Emissive and Color‐Tunable CuInS2‐Based Colloidal Semiconductor Nanocrystals: Off‐Stoichiometry Effects and Improved Electroluminescence Performance , 2012 .

[73]  Heesun Yang,et al.  Efficient White-Light-Emitting Diodes Fabricated from Highly Fluorescent Copper Indium Sulfide Core/Shell Quantum Dots , 2012 .

[74]  Heesun Yang,et al.  Fabrication of white light-emitting diodes based on solvothermally synthesized copper indium sulfide quantum dots as color converters , 2012 .

[75]  M. Pomper,et al.  CuInSe/ZnS core/shell NIR quantum dots for biomedical imaging. , 2011, Small.

[76]  Heesun Yang,et al.  Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields , 2011 .

[77]  Marco Zanella,et al.  Sequential cation exchange in nanocrystals: preservation of crystal phase and formation of metastable phases. , 2011, Nano letters.

[78]  Heesun Yang,et al.  Noninjection, one-pot synthesis of Cu-deficient CuInS2/ZnS core/shell quantum dots and their fluorescent properties. , 2011, Journal of colloid and interface science.

[79]  Zhenghong Lu,et al.  Colloidal CuInSe2 Nanocrystals in the Quantum Confinement Regime: Synthesis, Optical Properties, and Electroluminescence , 2011 .

[80]  M. Loi,et al.  Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. , 2011, ACS nano.

[81]  C. Burda,et al.  Synthesis and Photophysical Properties of Ternary I–III–VI AgInS2 Nanocrystals: Intrinsic versus Surface States , 2011 .

[82]  S. Kuwabata,et al.  Preparation of Luminescent AgInS2−AgGaS2 Solid Solution Nanoparticles and Their Optical Properties , 2010 .

[83]  T. Pons,et al.  Synthesis and Characterization of Near-Infrared Cu−In−Se/ZnS Core/Shell Quantum Dots for In vivo Imaging , 2010 .

[84]  J. Parisi,et al.  Synthesis and shape control of CuInS(2) nanoparticles. , 2010, Journal of the American Chemical Society.

[85]  T. Mirkovic,et al.  Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. , 2010, ACS nano.

[86]  Ming‐Yong Han,et al.  Composition-tunable alloyed semiconductor nanocrystals. , 2010, Accounts of chemical research.

[87]  S. Kuwabata,et al.  Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment. , 2010, Chemical Communications.

[88]  K. Sumiyama,et al.  Synthesis of Ag–In binary sulfide nanoparticles—structural tuning and their photoluminescence properties , 2010 .

[89]  Shikuan Yang,et al.  Blue Luminescence of ZnO Nanoparticles Based on Non‐Equilibrium Processes: Defect Origins and Emission Controls , 2010 .

[90]  R. Brutchey,et al.  Synthesis of Metastable Wurtzite CuInSe2 Nanocrystals , 2010 .

[91]  Rakesh Agrawal,et al.  Sulfide nanocrystal inks for dense Cu(In1-xGa(x))(S1-ySe(y))2 absorber films and their photovoltaic performance. , 2009, Nano letters.

[92]  Liang Li,et al.  Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging , 2009 .

[93]  A. Walsh,et al.  Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds , 2009 .

[94]  B. Korgel,et al.  Wurtzite−Chalcopyrite Polytypism in CuInS2 Nanodisks , 2009 .

[95]  Xiaogang Peng,et al.  Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. , 2009, Journal of the American Chemical Society.

[96]  B. Korgel,et al.  Synthesis of CuInSe(2) nanocrystals with trigonal pyramidal shape. , 2009, Journal of the American Chemical Society.

[97]  T. Omata,et al.  Colloidal Synthesis of Ternary Copper Indium Diselenide Quantum Dots and Their Optical Properties , 2009 .

[98]  P. Hebert,et al.  III–V multijunction solar cells for concentrating photovoltaics , 2009 .

[99]  X. Gong,et al.  Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI 2 compounds , 2009 .

[100]  Ananth Dodabalapur,et al.  Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal "inks" for printable photovoltaics. , 2008, Journal of the American Chemical Society.

[101]  M. Salinga,et al.  A map for phase-change materials. , 2008, Nature materials.

[102]  M. Uehara,et al.  Synthesis of CuInS2 fluorescent nanocrystals and enhancement of fluorescence by controlling crystal defect. , 2008, The Journal of chemical physics.

[103]  Rakesh Agrawal,et al.  Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. , 2008, Nano letters (Print).

[104]  Moungi G Bawendi,et al.  Ternary I-III-VI quantum dots luminescent in the red to near-infrared. , 2008, Journal of the American Chemical Society.

[105]  L. An,et al.  Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. , 2008, Journal of the American Chemical Society.

[106]  S. Kelley,et al.  Synthesis of Colloidal CuGaSe 2 , CuInSe 2 , and Cu(InGa)Se 2 Nanoparticles , 2008 .

[107]  Tsukasa Torimoto,et al.  Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore. , 2007, Journal of the American Chemical Society.

[108]  Yongfang Li,et al.  A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent , 2007 .

[109]  J. Vittal,et al.  AgInSe2 nanorods: A semiconducting material for saturable absorber , 2007, 0710.5573.

[110]  J. Vittal,et al.  One-pot synthesis and third-order nonlinear optical properties of AgInS2 nanocrystals. , 2006, Chemical communications.

[111]  M. Bawendi,et al.  On the mechanism of lead chalcogenide nanocrystal formation. , 2006, Journal of the American Chemical Society.

[112]  M. Niederberger,et al.  Nonaqueous and surfactant-free synthesis routes to metal oxide nanoparticles , 2006 .

[113]  Antoni Rogalski,et al.  HgCdTe infrared detector material: history, status and outlook , 2005 .

[114]  R. R. Philip,et al.  Nonideal anion displacement, band gap variation, and valence band splitting in Cu–In–Se compounds , 2005 .

[115]  Yadong Yin,et al.  Cation Exchange Reactions in Ionic Nanocrystals , 2004, Science.

[116]  M. Lux‐Steiner,et al.  Do we really need another PL study of CuInSe2 , 2004 .

[117]  C. Rincón,et al.  Effect of ordered arrays of native defects on the crystal structure of In- and Ga-rich Cu-ternaries , 2003 .

[118]  P. Rudolph Non‐stoichiometry related defects at the melt growth of semiconductor compound crystals – a review , 2003 .

[119]  R. Raffaelle,et al.  Nanocrystalline Chalcopyrite Materials (CuInS2 and CuInSe2) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors , 2003 .

[120]  G. Hodes Chemical Solution Deposition Of Semiconductor Films , 2002 .

[121]  B. Stanbery Copper Indium Selenides and Related Materials for Photovoltaic Devices , 2002 .

[122]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[123]  C. Rincón,et al.  On the band gap anomaly in I–III–VI2, I–III3–VI5, and I–III5–VI8 families of Cu ternaries , 2000 .

[124]  J. M. Merino,et al.  Structural characterization of CuIn 2Se 3.5, CuIn 3Se 5 and CuIn 5Se 8 compounds , 2000 .

[125]  C. Rincón,et al.  Defect physics of the CuInSe2 chalcopyrite semiconductor , 1999 .

[126]  N. Gasanly,et al.  Donor-acceptor pair recombination in AgIn5S8 single crystals , 1999 .

[127]  Study of the Ag–In–Te ternary system , 1999 .

[128]  H. Lutz,et al.  Redetermination of the Crystal Structure of γ-In2Se3by Twin Crystal X-Ray Method , 1996 .

[129]  S. Nakamura,et al.  InGaN-Based Multi-Quantum-Well-Structure Laser Diodes , 1996 .

[130]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[131]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[132]  A. Alivisatos,et al.  Melting in Semiconductor Nanocrystals , 1992, Science.

[133]  Theodore D. Moustakas,et al.  Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon , 1991 .

[134]  G. Kühn,et al.  Phase relations in the ternary system Cu-In-Se , 1987 .

[135]  Prinz Stabilization of bcc Co via epitaxial growth on GaAs. , 1985, Physical review letters.

[136]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[137]  Alex Zunger,et al.  Theory of the band-gap anomaly in AB C 2 chalcopyrite semiconductors , 1984 .

[138]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[139]  C. Djega-Mariadassou,et al.  Optical gap and its low-temperature dependence in AgIn5Se8 , 1979 .

[140]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .