A fuzzy constraint-based approach to data reconciliation in material flow analysis

Data reconciliation consists in modifying noisy or unreliable data in order to make them consistent with a mathematical model (herein a material flow network). The conventional approach relies on least-squares minimization. Here, we use a fuzzy set-based approach, replacing Gaussian likelihood functions by fuzzy intervals, and a leximin criterion. We show that the setting of fuzzy sets provides a generalized approach to the choice of estimated values, that is more flexible and less dependent on oftentimes debatable probabilistic justifications. It potentially encompasses interval-based formulations and the least squares method, by choosing appropriate membership functions and aggregation operations. This paper also lays bare the fact that data reconciliation under the fuzzy set approach is viewed as an information fusion problem, as opposed to the statistical tradition which solves an estimation problem.

[1]  Jules Thibault,et al.  Dynamic data reconciliation: Alternative to Kalman filter , 2006 .

[2]  Didier Dubois,et al.  Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty , 1996, Applied Intelligence.

[3]  Robert J. Klee,et al.  Multilevel cycle of anthropogenic copper. , 2004, Environmental science & technology.

[4]  Shinya Kikuchi,et al.  A method to defuzzify the fuzzy number: transportation problem application , 2000, Fuzzy Sets Syst..

[5]  A. Wolman THE METABOLISM OF CITIES. , 1965, Scientific American.

[6]  D. Dubois,et al.  A Semantics for Possibility Theory Based on Likelihoods , 1997 .

[7]  Gleb Beliakov,et al.  Aggregation functions based on penalties , 2010, Fuzzy Sets Syst..

[8]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[9]  C. M. Crowe,et al.  Data reconciliation — Progress and challenges , 1996 .

[10]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[11]  D. van Beers,et al.  THE APPLICATION OF MATERIAL FLOW ANALYSIS FOR THE EVALUATION OF THE RECOVERY POTENTIAL OF SECONDARY METALS IN AUSTRALIA , 2005 .

[12]  Frédéric Goualard,et al.  Interval Constraints: Results and Perspectives , 1999, New Trends in Constraints.

[13]  Roland W. Scholz,et al.  Probabilistic material flow modeling for assessing the environmental exposure to compounds: Methodology and an application to engineered nano-TiO2 particles , 2010, Environ. Model. Softw..

[14]  T E Graedel,et al.  Exploratory data analysis of the multilevel anthropogenic copper cycle. , 2004, Environmental science & technology.

[15]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[16]  J. Ragot,et al.  Linear mass balance equilibration: a new approach for an old problem. , 2005, ISA transactions.

[17]  D. Dubois,et al.  An application of fuzzy arithmetic to the optimization of industrial machining processes , 1987 .

[18]  P. Brunner,et al.  Metabolism of the Anthroposphere , 1991 .

[19]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[20]  Raymond R. Tan,et al.  Fuzzy data reconciliation in reacting and non-reacting process data for life cycle inventory analysis , 2007 .

[21]  Didier Dubois,et al.  A definition of subjective possibility , 2008, Int. J. Approx. Reason..

[22]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[23]  Helmut Rechberger,et al.  Practical handbook of material flow analysis , 2003 .

[24]  M. Chadli,et al.  Data reconciliation: A robust approach using a contaminated distribution , 2008 .

[25]  Marios M. Polycarpou,et al.  Parameter Estimation Methods , 2006 .

[26]  Serge Domenech,et al.  Development and validation of a dynamic material flow analysis model for French copper cycle , 2013 .

[27]  Didier Dubois,et al.  Data Reconciliation under Fuzzy Constraints in Material Flow Analysis , 2013, EUSFLAT Conf..

[28]  Jean Descloux,et al.  Approximations in $L^p $ and Chebyshev Approximations , 1963 .

[29]  Jeffrey Dean Kelly,et al.  Techniques for solving industrial nonlinear data reconciliation problems , 2004, Comput. Chem. Eng..

[30]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[31]  Nasa Contractor,et al.  DECISION-MAKING IN A FUZZY ENVIRONMENT , 1970 .

[32]  Didier Dubois,et al.  Possibility theory and statistical reasoning , 2006, Comput. Stat. Data Anal..

[33]  John R. Rice Tchebycheff approximation in a compact metric space , 1962 .

[34]  J. Ragot,et al.  Reformulation of data reconciliation problem with unknown-but-bounded errors , 2004 .

[35]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[36]  Radko Mesiar,et al.  Fuzzy Interval Analysis , 2000 .

[37]  Gilles Mauris Expression of Measurement Uncertainty in a Very Limited Knowledge Context: A Possibility Theory-Based Approach , 2007, IEEE Transactions on Instrumentation and Measurement.

[38]  Shankar Narasimhan,et al.  Data reconciliation & gross error detection: an intelligent use of process data , 1999 .

[39]  Frédéric Benhamou,et al.  Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques , 2006, TOMS.

[40]  S. Stigler,et al.  The History of Statistics: The Measurement of Uncertainty before 1900 by Stephen M. Stigler (review) , 1986, Technology and Culture.

[41]  R. Ayres,et al.  Production, Consumption, and Externalities , 1969 .

[42]  Gilles Mauris,et al.  Possibility distributions: A unified representation of usual direct-probability-based parameter estimation methods , 2011, Int. J. Approx. Reason..

[43]  Didier Dubois,et al.  Computing improved optimal solutions to max-min flexible constraint satisfaction problems , 1999, Eur. J. Oper. Res..

[44]  Serge Domenech,et al.  Development of a Dynamic Material Flow Analysis Model for French Copper Cycle , 2012 .

[45]  Etienne E. Kerre,et al.  Implementation of piecewise linear fuzzy quantities , 1995, Int. J. Intell. Syst..

[46]  Didier Dubois,et al.  Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities , 2004, Reliab. Comput..

[47]  M. V. Durance,et al.  Material Balance Approach for Parameter Determination in Bioleaching Process , 2004 .

[48]  N. E. Gallopoulos,et al.  Strategies for Manufacturing , 1989 .

[49]  Pradeep Jain,et al.  Case study of landfill reclamation at a Florida landfill site. , 2013, Waste management.