The natural neighbor series manuals and source codes

Abstract This software series is concerned with reconstruction of spatial functions by interpolating a set of discrete observations having two or three independent variables. There are three components in this series: (1) nngridr: an implementation of natural neighbor interpolation, 1994, (2) modemap: an implementation of natural neighbor interpolation on the sphere, 1998 and (3) orebody: an implementation of natural neighbor isosurface generation (publication incomplete). Interpolation is important to geologists because it can offer graphical insights into significant geological structure and behavior, which, although inherent in the data, may not be otherwise apparent. It also is the first step in numerical integration, which provides a primary avenue to detailed quantification of the observed spatial function. Interpolation is implemented by selecting a surface-generating rule that controls the form of a `bridge' built across the interstices between adjacent observations. The cataloging and classification of the many such rules that have been reported is a subject in itself ( Watson, 1992 ), and the merits of various approaches have been debated at length. However, for practical purposes, interpolation methods are usually judged on how satisfactorily they handle problematic data sets. Sparse scattered data or traverse data, especially if the functional values are highly variable, generally tests interpolation methods most severely; but one method, natural neighbor interpolation, usually does produce preferable results for such data.