A Bayesian Approach to Assess the Performance of Lightning Detection Systems

AbstractHistorically, researchers explore the effectiveness of one lightning detection system with respect to another system; that is, the probability that system A detects a discharge given that system B detected the same discharge is estimated. Since no system detects all lightning, a more rigorous comparison should include the reverse process—that is, the probability that system B detects a discharge given that system A detected it. Further, the comparison should use the fundamental physical process detected by each system. Of particular interest is the comparison of ground-based radio frequency detectors with space-based optical detectors. Understanding these relationships is critical as the availability and use of lightning data, both ground based and space based, increases. As an example, this study uses Bayesian techniques to compare the effectiveness of the Earth Networks Total Lightning Network (ENTLN), a ground-based wideband network, and the Lightning Imaging Sensor (LIS), a space-based optical...

[1]  Hugh J. Christian,et al.  Timing Uncertainty of the Lightning Imaging Sensor , 2015 .

[2]  John M. Hall,et al.  The Lightning Imaging Sensor , 1999 .

[3]  K.L. Cummins,et al.  An Overview of Lightning Locating Systems: History, Techniques, and Data Uses, With an In-Depth Look at the U.S. NLDN , 2009, IEEE Transactions on Electromagnetic Compatibility.

[4]  Steven A. Cummer,et al.  Simultaneous observations of optical lightning and terrestrial gamma ray flash from space , 2013 .

[5]  Scott D. Rudlosky,et al.  Evaluating ENTLN performance relative to TRMM/LIS , 2015 .

[6]  Wolfgang Schulz,et al.  Lightning locating systems: Insights on characteristics and validation techniques , 2015 .

[7]  P. Krehbiel,et al.  Accuracy of the Lightning Mapping Array , 2003 .

[8]  Kenneth L. Cummins,et al.  National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004 , 2007 .

[9]  William J. Koshak,et al.  The GOES-R GeoStationary Lightning Mapper (GLM) , 2012 .

[10]  W. David Rust,et al.  Lightning and precipitation history of a microburst‐producing storm , 1988 .

[11]  Umran S. Inan,et al.  Long‐range lightning geolocation using a VLF radio atmospheric waveform bank , 2010 .

[12]  Phillip M. Bitzer New revelations on lightning initiation and evolution using a newly developed array of wideband electric field sensors , 2011 .

[13]  Craig J. Rodger,et al.  Location accuracy of VLF World-Wide Lightning Location (WWLL) network: Post-algorithm upgrade , 2005 .

[14]  Umran S. Inan,et al.  Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations , 2013 .

[15]  Vladimir A. Rakov,et al.  Evaluation of U.S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004-2009 , 2011 .

[16]  Richard J. Blakeslee,et al.  Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part 2; Clustering Algorithm , 2007 .

[17]  K. Cummins,et al.  Combined Satellite- and Surface-Based Estimation of the Intracloud Cloud-to-Ground Lightning Ratio over the Continental United States , 2001 .

[18]  Vladimir A. Rakov,et al.  An evaluation of the performance characteristics of the U.S. National Lightning Detection Network in Florida using rocket‐triggered lightning , 2005 .

[19]  Steven J. Goodman,et al.  Comparison of ground‐based 3‐dimensional lightning mapping observations with satellite‐based LIS observations in Oklahoma , 2000 .

[20]  Wolfgang Schulz,et al.  Performance Characteristics of Distinct Lightning Detection Networks Covering Belgium , 2013 .

[21]  Antti Mäkelä,et al.  The comparison of GLD360 and EUCLID lightning location systems in Europe , 2013 .

[22]  Lawrence D. Carey,et al.  A Comparison of Two Ground-Based Lightning Detection Networks against the Satellite-Based Lightning Imaging Sensor (LIS) , 2014 .

[23]  Kristen L. Corbosiero,et al.  An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth , 2010 .

[24]  John M. Hall,et al.  The North Alabama Lightning Mapping Array: Recent Severe Storm Observations and Future Prospects , 2005 .

[25]  Richard J. Blakeslee,et al.  The detection of lightning from geostationary orbit , 1989 .

[26]  Scott D. Rudlosky,et al.  Evaluating WWLLN performance relative to TRMM/LIS , 2013 .

[27]  John M. Hall,et al.  Characterization and applications of VLF/LF source locations from lightning using the Huntsville Alabama Marx Meter Array , 2013 .

[28]  Richard J. Blakeslee,et al.  Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted Diurnal Variability , 2002 .

[29]  Vladimir A. Rakov,et al.  Performance characteristics of the ENTLN evaluated using rocket-triggered lightning data , 2015 .

[30]  Ting Wu,et al.  Initial results of LF sensor network for lightning observation and characteristics of lightning emission in LF band , 2014 .