Growth and optical evaluation of InGaAs/GaAs quantum dots self-formed during alternate supply of precursors

Abstract We report the growth and the optical evaluation of highly uniform InGaAs/GaAs quantum dots self-formed by the atomic layer epitaxy (ALE) technique. The dots are advantageous for optical devices, compared with the dots grown by molecular beam epitaxy or metalorganic vapor phase epitaxy via Stranski–Krastanov mode. With the dots grown by the ALE technique, we observed the phonon bottleneck effect for carrier relaxation and demonstrated lasing by current injection.

[1]  Baldereschi,et al.  Excess elastic energy and the instability of bulk and epitaxial lattice-mismatched monolayer (001) superlattices. , 1989, Physical review. B, Condensed matter.

[2]  Mitsuru Sugawara,et al.  Controlled Quantum Confinement Potentials in Self-Formed InGaAs Quantum Dots Grown by Atomic Layer Epitaxy Technique , 1996 .

[3]  D. Miller,et al.  Mechanism for enhanced optical nonlinearities and bistability by combined dielectric-electronic confinement in semiconductor microcrystallites. , 1986, Optics letters.

[4]  Hajime Shoji,et al.  Emission from discrete levels in self‐formed InGaAs/GaAs quantum dots by electric carrier injection: Influence of phonon bottleneck , 1996 .

[5]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[6]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[7]  M. Sugawara,et al.  Self-Formed In0.5Ga0.5As Quantum Dots on GaAs Substrates Emitting at 1.3 µm , 1994 .

[8]  John E. Bowers,et al.  1.3 μm photoluminescence from InGaAs quantum dots on GaAs , 1995 .

[9]  L. Brus Zero-dimensional "excitons" in semiconductor clusters , 1986 .

[10]  Eaglesham,et al.  Dislocation-free Stranski-Krastanow growth of Ge on Si(100). , 1990, Physical review letters.

[11]  Nicolas Grandjean,et al.  Epitaxial growth of highly strained InxGa1−xAs on GaAs(001): the role of surface diffusion length☆ , 1993 .

[12]  S. Denbaars,et al.  Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces , 1993 .

[13]  H. Ishikawa,et al.  Lasing at three-dimensionally quantum-confined sublevel of self-organized In/sub 0.5/Ga/sub 0.5/As quantum dots by current injection , 1995, IEEE Photonics Technology Letters.

[14]  Sugawara Theory of spontaneous-emission lifetime of Wannier excitons in mesoscopic semiconductor quantum disks. , 1995, Physical review. B, Condensed matter.

[15]  G. Solomon,et al.  Substrate temperature and monolayer coverage effects on epitaxial ordering of InAs and InGaAs islands on GaAs , 1995 .

[16]  K. Wada,et al.  In-situ observation of roughening process of MBE GaAs surface by scanning reflection electron microscopy , 1990 .

[17]  K. Nakajima,et al.  Arsenic desorption from the InAs(001) growth surface during atomic layer epitaxy , 1993 .

[18]  Mark A. Reed,et al.  Nanoelectronics: Fanciful physics or real devices? , 1989 .

[19]  Harold G. Craighead,et al.  Optical spectroscopy of ultrasmall structures etched from quantum wells , 1986 .

[20]  Takashi Fukui,et al.  GaAs tetrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor deposition , 1991 .

[21]  G. Bastard,et al.  Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. , 1990, Physical review. B, Condensed matter.