Fast Monte Carlo Algorithms for Tensor Operations

We consider scalable randomized algorithms for many common tensor operations, including tensor multiplication, low-rank decomposition and nuclear norm minimization. Such operations arise in a number of modern day applications of tensors in machine learning and signal processing. Specifically, we introduce polynomial time algorithms that employ a small number of lateral and/or horizontal slices of the underlying 3-rd order tensor, that offer relative error guarantees for the quality of the solutions. All results can easily be extended to higher order tensors. The proposed methods are illustrated on selected real data sets.

[1]  Daniel J. Hsu,et al.  Tail inequalities for sums of random matrices that depend on the intrinsic dimension , 2012 .

[2]  Yuan Xie,et al.  Multi-View Subspace Clustering via Relaxed L1-Norm of Tensor Multi-Rank , 2016, ArXiv.

[3]  Huan Xu,et al.  Provable Subspace Clustering: When LRR Meets SSC , 2013, IEEE Transactions on Information Theory.

[4]  John Wright,et al.  Provable Low-Rank Tensor Recovery , 2014 .

[5]  David E. Booth,et al.  Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.

[6]  Misha Elena Kilmer,et al.  Novel Methods for Multilinear Data Completion and De-noising Based on Tensor-SVD , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Karen S. Braman Third-Order Tensors as Linear Operators on a Space of Matrices , 2010 .

[8]  Santosh S. Vempala,et al.  Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.

[9]  S. Schreiber,et al.  Vector algebra in the analysis of genome-wide expression data , 2002, Genome Biology.

[10]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2013, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[12]  Zemin Zhang,et al.  Exact Tensor Completion Using t-SVD , 2015, IEEE Transactions on Signal Processing.

[13]  Anima Anandkumar,et al.  Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..

[14]  Mario Vento,et al.  Graph Matching and Learning in Pattern Recognition in the Last 10 Years , 2014, Int. J. Pattern Recognit. Artif. Intell..

[15]  Ameet Talwalkar,et al.  Divide-and-Conquer Matrix Factorization , 2011, NIPS.

[16]  Larry S. Davis,et al.  Learning Structured Low-Rank Representations for Image Classification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Pieter M. Kroonenberg,et al.  Three-mode principal component analysis : theory and applications , 1983 .

[18]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[19]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Misha Elena Kilmer,et al.  Third-Order Tensors as Operators on Matrices: A Theoretical and Computational Framework with Applications in Imaging , 2013, SIAM J. Matrix Anal. Appl..

[21]  Wei Liu,et al.  Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  M. Kilmer,et al.  Factorization strategies for third-order tensors , 2011 .

[23]  Soon Ki Jung,et al.  Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset , 2015, Comput. Sci. Rev..

[24]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[25]  S. Muthukrishnan,et al.  Relative-Error CUR Matrix Decompositions , 2007, SIAM J. Matrix Anal. Appl..

[26]  Eric L. Miller,et al.  Tensor-Based Formulation and Nuclear Norm Regularization for Multienergy Computed Tomography , 2013, IEEE Transactions on Image Processing.

[27]  Pedro A. Valdes-Sosa,et al.  Tensor Analysis and Fusion of Multimodal Brain Images , 2015, Proceedings of the IEEE.

[28]  Misha Elena Kilmer,et al.  Clustering multi-way data: a novel algebraic approach , 2014, ArXiv.

[29]  Junbin Gao,et al.  A Submodule Clustering Method for Multi-way Data by Sparse and Low-Rank Representation , 2016, ArXiv.

[30]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[31]  Takeo Kanade,et al.  A Multibody Factorization Method for Independently Moving Objects , 1998, International Journal of Computer Vision.

[32]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[33]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[34]  Ameet Talwalkar,et al.  Can matrix coherence be efficiently and accurately estimated? , 2011, AISTATS.

[35]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[36]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[37]  Petros Drineas,et al.  Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..