Investigation and prediction of chip geometry in diamond turning

Abstract Management of the chips generated in diamond turning is often critical, because contact between chips and the workpiece can result in superficial damage to the finished surface. Controlling chip motion is not a trivial process as the proper positioning of an oil or air stream requires an understanding of the dynamics of a diamond turned chip and the machining parameters that affect it. Work has been performed to investigate the effects of cutting speed, depth of cut, tool geometry, tool wear, and workpiece material properties on chip motion and geometry. Utilizing radius of curvature data from cutting experiments, a parameter has been proposed that can be used to predict chip radius of curvature for a wide range of machining conditions. This chip curvature parameter, χ , exhibits a power law relationship with chip radius of curvature as a function of tool geometry, depth of cut, cutting speed, and both elastic and plastic properties of the workpiece material.