Path Line Attributes - an Information Visualization Approach to Analyzing the Dynamic Behavior of 3D Time-Dependent Flow Fields

We describe an approach to visually analyzing the dynamic behavior of 3D time-dependent flow fields by considering the behavior of the path lines. At selected positions in the 4D space-time domain, we compute a number of local and global properties of path lines describing relevant features of them. The resulting multivariate data set is analyzed by applying state-of-the-art information visualization approaches in the sense of a set of linked views (scatter plots, parallel coordinates, etc.) with interactive brushing and focus+context visualization. The selected path lines with certain properties are integrated and visualized as colored 3D curves. This approach allows an interactive exploration of intricate 4D flow structures. We apply our method to a number of flow data sets and describe how path line attributes are used for describing characteristic features of these flows.

[1]  Gordon Erlebacher,et al.  A texture-based framework for spacetime-coherent visualization of time-dependent vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[2]  Hans Hagen,et al.  Topology-Based Visualization of Time-Dependent 2D Vector Fields , 2001, VisSym.

[3]  Gerik Scheuermann,et al.  Eyelet particle tracing - steady visualization of unsteady flow , 2005, VIS 05. IEEE Visualization, 2005..

[4]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[5]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[6]  Hans-Peter Seidel,et al.  Feature Flow Fields , 2003, VisSym.

[7]  Michael Mayer,et al.  Interactive Feature Specification for Simulation Data on Time-Varying Grids , 2005, SimVis.

[8]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[9]  Hans-Peter Seidel,et al.  Stream line and path line oriented topology for 2D time-dependent vector fields , 2004, IEEE Visualization 2004.

[10]  Denis Gracanin,et al.  Interactive visual analysis and exploration of injection systems simulations , 2005, VIS 05. IEEE Visualization, 2005..

[11]  Helwig Hauser,et al.  Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data , 2003, VisSym.

[12]  J. Hunt Vorticity and vortex dynamics in complex turbulent flows , 1987 .

[13]  Gordon Erlebacher,et al.  Particle and texture based spatiotemporal visualization of time-dependent vector fields , 2005, VIS 05. IEEE Visualization, 2005..

[14]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[15]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[16]  Bernd Hamann,et al.  Topological segmentation in three-dimensional vector fields , 2004, IEEE Transactions on Visualization and Computer Graphics.

[17]  Hans-Peter Seidel,et al.  Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking , 2005, VIS 05. IEEE Visualization, 2005..

[18]  Gerik Scheuermann,et al.  Streamline Predicates as Flow Topology Generalization , 2007, Topology-based Methods in Visualization.

[19]  Hans-Peter Seidel,et al.  Boundary switch connectors for topological visualization of complex 3D vector fields , 2004, VISSYM'04.

[20]  Ronald Peikert,et al.  Vortex Tracking in Scale-Space , 2002, VisSym.

[21]  Hans-Peter Seidel,et al.  Topological methods for 2D time-dependent vector fields based on stream lines and path lines , 2005, IEEE Transactions on Visualization and Computer Graphics.

[22]  Chris R. Johnson Top Scientific Visualization Research Problems , 2004, IEEE Computer Graphics and Applications.

[23]  David C. Banks,et al.  Vortex tubes in turbulent flows: identification, representation, reconstruction , 1994, Proceedings Visualization '94.

[24]  Melissa A. Green,et al.  Detection of Lagrangian coherent structures in three-dimensional turbulence , 2007, Journal of Fluid Mechanics.

[25]  J. Marsden,et al.  Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows , 2005 .

[26]  Kenny Gruchalla,et al.  Immersive Visualization of the Hurricane Isabel Dataset , .

[27]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[28]  Xavier Tricoche,et al.  Tracking of vector field singularities in unstructured 3D time-dependent datasets , 2004, IEEE Visualization 2004.

[29]  Helwig Löffelmann,et al.  Visualizing Dynamical Systems near Critical Points , 1998 .

[30]  George Haller,et al.  Detection of Lagrangian Coherent Structures in 3D Turbulence , 2006 .

[31]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..