The Impact of Reticulate Evolution on Genome Phylogeny

Genome phylogenies are used to build tree-like representations of evolutionary relationships among genomes. However, in condensing the phylogenetic signals within a set of genomes down to a single tree, these methods generally do not explicitly take into account discordant signals arising due to lateral genetic transfer. Because conflicting vertical and horizontal signals can produce compromise trees that do not reflect either type of history, it is essential to understand the sensitivity of inferred genome phylogenies to these confounding effects. Using replicated simulations of genome evolution, we show that different scenarios of lateral genetic transfer have significant impacts on the ability to recover the "true" tree of genomes, even when corrections for phylogenetically discordant signals are used.

[1]  G. B. Golding,et al.  The fate of laterally transferred genes: life in the fast lane to adaptation or death. , 2006, Genome research.

[2]  T. Cavalier-smith,et al.  The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. , 2002, International journal of systematic and evolutionary microbiology.

[3]  Céline Brochier,et al.  Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox , 2004, Genome Biology.

[4]  J. Lake,et al.  Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. , 2004, Molecular biology and evolution.

[5]  Timothy J. Harlow,et al.  Highways of gene sharing in prokaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S. Whelan,et al.  A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. , 2001, Molecular biology and evolution.

[7]  Mark Wilkinson,et al.  Measuring support and finding unsupported relationships in supertrees. , 2005, Systematic biology.

[8]  N. Grishin,et al.  Genome trees constructed using five different approaches suggest new major bacterial clades , 2001, BMC Evolutionary Biology.

[9]  N. Galtier A model of horizontal gene transfer and the bacterial phylogeny problem. , 2007, Systematic biology.

[10]  Robert P. Hirt,et al.  Organelles, Genomes and Eukaryote Phylogeny : An Evolutionary Synthesis in the Age of Genomics , 2004 .

[11]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[12]  Olivier Gascuel,et al.  Fast and Accurate Phylogeny Reconstruction Algorithms Based on the Minimum-Evolution Principle , 2002, WABI.

[13]  Eric Bapteste,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:Pattern pluralism and the Tree of Life hypothesis , 2007 .

[14]  Timothy J. Harlow,et al.  Do different surrogate methods detect lateral genetic transfer events of different relative ages? , 2006, Trends in microbiology.

[15]  Andrés Moya,et al.  Genome Rearrangement Distances and Gene Order Phylogeny in γ-Proteobacteria , 2005 .

[16]  G Perrière,et al.  Bacterial molecular phylogeny using supertree approach. , 2001, Genome informatics. International Conference on Genome Informatics.

[17]  J. Lake,et al.  Horizontal gene transfer among genomes: the complexity hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Robert L. Charlebois,et al.  Weighted Genome Trees: Refinements and Applications , 2005, Journal of bacteriology.

[19]  W. Doolittle,et al.  Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. , 2006, Genome research.

[20]  Bas E. Dutilh,et al.  The Consistent Phylogenetic Signal in Genome Trees Revealed by Reducing the Impact of Noise , 2004, Journal of Molecular Evolution.

[21]  M. Ragan,et al.  Inferring Genome Trees by Using a Filter To Eliminate Phylogenetically Discordant Sequences and a Distance Matrix Based on Mean Normalized BLASTP Scores , 2002, Journal of bacteriology.

[22]  D. Penny,et al.  Genome-scale phylogeny and the detection of systematic biases. , 2004, Molecular biology and evolution.

[23]  Andrés Moya,et al.  Genome rearrangement distances and gene order phylogeny in gamma-Proteobacteria. , 2005, Molecular biology and evolution.

[24]  C. Woese,et al.  The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. , 1989, Systematic and Applied Microbiology.

[25]  Vincent Moulton,et al.  Using consensus networks to visualize contradictory evidence for species phylogeny. , 2004, Molecular biology and evolution.

[26]  Nicholas Hamilton,et al.  Phylogenetic identification of lateral genetic transfer events , 2006, BMC Evolutionary Biology.

[27]  W. Fitch,et al.  Construction of phylogenetic trees. , 1967, Science.

[28]  B. Snel,et al.  Genome phylogeny based on gene content , 1999, Nature Genetics.

[29]  Robert G. Beiko,et al.  A simulation test bed for hypotheses of genome evolution , 2007, Bioinform..

[30]  Olga Zhaxybayeva,et al.  Genome mosaicism and organismal lineages. , 2004, Trends in genetics : TIG.

[31]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Sankoff,et al.  Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[33]  O. Bininda-Emonds,et al.  The evolution of supertrees. , 2004, Trends in ecology & evolution.

[34]  Ming-Yang Kao,et al.  Phylogeny Reconstruction , 2008, Encyclopedia of Algorithms.

[35]  Faisal Ababneh,et al.  The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated. , 2004, Systematic biology.

[36]  Leon Goldovsky,et al.  The net of life: reconstructing the microbial phylogenetic network. , 2005, Genome research.

[37]  Vivek Jayaswal,et al.  Estimation of phylogeny and invariant sites under the general Markov model of nucleotide sequence evolution. , 2007, Systematic biology.

[38]  Simon A. A. Travers,et al.  Does a tree–like phylogeny only exist at the tips in the prokaryotes? , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[39]  Barbara R. Holland,et al.  Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences , 2006, BMC Bioinformatics.

[40]  D. Wolfe,et al.  Nonparametric Statistical Methods. , 1974 .

[41]  Edward Susko,et al.  On reduced amino acid alphabets for phylogenetic inference. , 2007, Molecular biology and evolution.

[42]  M. Ragan On surrogate methods for detecting lateral gene transfer. , 2001, FEMS microbiology letters.