Highly Oscillatory Problems with Time-Dependent Vanishing Frequency

In the analysis of highly oscillatory evolution problems, it is commonly assumed that a single frequency is present and that it is either constant or, at least, bounded from below by a strictly pos...

[1]  O. Morandi,et al.  Wigner model for quantum transport in graphene , 2011, 1102.2416.

[2]  Mohammed Lemou,et al.  A New Class of Uniformly Accurate Numerical Schemes for Highly Oscillatory Evolution Equations , 2017, Found. Comput. Math..

[3]  Lawrence M. Perko,et al.  Higher order averaging and related methods for perturbed periodic and quasi-periodic systems , 1969 .

[4]  Nicolas Crouseilles,et al.  Uniformly accurate numerical schemes for highly oscillatory Klein–Gordon and nonlinear Schrödinger equations , 2013, Numerische Mathematik.

[5]  Jesús María Sanz-Serna,et al.  Higher-Order Averaging, Formal Series and Numerical Integration III: Error Bounds , 2015, Found. Comput. Math..

[6]  Ander Murua,et al.  Stroboscopic Averaging for the Nonlinear Schrödinger Equation , 2015, Found. Comput. Math..

[7]  Ander Murua,et al.  Multi-revolution composition methods for highly oscillatory differential equations , 2014, Numerische Mathematik.

[8]  Jesús María Sanz-Serna,et al.  Higher-Order Averaging, Formal Series and Numerical Integration II: The Quasi-Periodic Case , 2012, Foundations of Computational Mathematics.

[9]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[10]  Nicolas Crouseilles,et al.  Asymptotic Preserving schemes for highly oscillatory Vlasov-Poisson equations , 2012, J. Comput. Phys..

[11]  Jesús María Sanz-Serna,et al.  Higher-Order Averaging, Formal Series and Numerical Integration I: B-series , 2010, Found. Comput. Math..

[12]  Mohammed Lemou,et al.  Highly-oscillatory evolution equations with multiple frequencies: averaging and numerics , 2017, Numerische Mathematik.

[13]  Ander Murua,et al.  Numerical stroboscopic averaging for ODEs and DAEs , 2011 .

[14]  Ernst Hairer,et al.  Long-term analysis of the Störmer–Verlet method for Hamiltonian systems with a solution-dependent high frequency , 2016, Numerische Mathematik.

[15]  Qin Li,et al.  A Multiband Semiclassical Model for Surface Hopping Quantum Dynamics , 2014, Multiscale Model. Simul..

[16]  Anton Arnold,et al.  Stationary Schrödinger equation in the semi-classical limit: WKB-based scheme coupled to a turning point , 2018, Calcolo.

[17]  Shi Jin,et al.  A Micro-Macro Method for a Kinetic Graphene Model in One Space Dimension , 2020, Multiscale Model. Simul..