Reconstruction of secular variation in seawater sulfate concentrations

Abstract. Long-term secular variation in seawater sulfate concentrations ([SO42−]SW) is of interest owing to its relationship to the oxygenation history of Earth's surface environment. In this study, we develop two complementary approaches for quantification of sulfate concentrations in ancient seawater and test their application to late Neoproterozoic (635 Ma) to Recent marine units. The "rate method" is based on two measurable parameters of paleomarine systems: (1) the S-isotope fractionation associated with microbial sulfate reduction (MSR), as proxied by Δ34SCAS-PY, and (2) the maximum rate of change in seawater sulfate, as proxied by p δ 34SCAS/∂ t(max). The "MSR-trend method" is based on the empirical relationship of Δ34SCAS-PY to aqueous sulfate concentrations in 81 modern depositional systems. For a given paleomarine system, the rate method yields an estimate of maximum possible [SO42−]SW (although results are dependent on assumptions regarding the pyrite burial flux, FPY), and the MSR-trend method yields an estimate of mean [SO42−]SW. An analysis of seawater sulfate concentrations since 635 Ma suggests that [SO42−]SW was low during the late Neoproterozoic (

[1]  T. Lyons,et al.  Decline in oceanic sulfate levels during the early Mesoproterozoic , 2014 .

[2]  Haiou Qiu,et al.  Early Triassic seawater sulfate drawdown , 2014 .

[3]  M. Kuypers,et al.  Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2 , 2013, Proceedings of the National Academy of Sciences.

[4]  R. Robinson,et al.  Icehouse–greenhouse variations in marine denitrification , 2013 .

[5]  D. Johnston,et al.  Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record , 2013, Proceedings of the National Academy of Sciences.

[6]  M. Gomes,et al.  Sulfur isotope systematics of a euxinic, low-sulfate lake: Evaluating the importance of the reservoir effect in modern and ancient oceans , 2013 .

[7]  Z. Berner,et al.  Pyrite geochemistry in the Toarcian Posidonia Shale of south‐west Germany: Evidence for contrasting trace‐element patterns of diagenetic and syngenetic pyrites , 2013 .

[8]  A. J. Kaufman,et al.  Local δ34S variability in ̃580Ma carbonates of northwestern Mexico and the Neoproterozoic marine sulfate reservoir , 2013 .

[9]  A. Bekker,et al.  Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event , 2012, Proceedings of the National Academy of Sciences.

[10]  S. Peters,et al.  Sulfate Burial Constraints on the Phanerozoic Sulfur Cycle , 2012, Science.

[11]  A. Paytan,et al.  Rapid Variability of Seawater Chemistry Over the Past 130 Million Years , 2012, Science.

[12]  A. J. Kaufman,et al.  Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: Insights from carbonates of northwestern Mexico and eastern California , 2012 .

[13]  N. Yoshida,et al.  Seasonal change in microbial sulfur cycling in monomictic Lake Fukami‐ike, Japan , 2012 .

[14]  D. Garbe‐Schönberg,et al.  Paired δ34S data from carbonate-associated sulfate and chromium-reducible sulfur across the traditional Lower–Middle Cambrian boundary of W-Gondwana , 2012 .

[15]  I. Tayasu,et al.  Sulfur stable isotope signature identifies the source of reduced sulfur in benthic communities in macrophyte zones of Lake Biwa, Japan , 2012, Limnology.

[16]  H. Strauss,et al.  Isotopic evidence for a sizeable seawater sulfate reservoir at 2.1 Ga , 2012 .

[17]  T. Ferdelman,et al.  Biogeochemical sulfur cycling in the water column of a shallow stratified sea-water lake: Speciation and quadruple sulfur isotope composition , 2011 .

[18]  T. Lyons,et al.  A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event , 2011 .

[19]  D. Johnston,et al.  Revisiting the dissimilatory sulfate reduction pathway , 2011, Geobiology.

[20]  T. Bosak,et al.  Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp. , 2011 .

[21]  T. Bosak,et al.  Large Sulfur Isotope Fractionation Does Not Require Disproportionation , 2011, Science.

[22]  B. Brunner,et al.  Microbially mediated re-oxidation of sulfide during dissimilatory sulfate reduction by Desulfobacter latus , 2011 .

[23]  D. Johnston Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle , 2011 .

[24]  A. Knoll,et al.  Geochemical evidence for widespread euxinia in the Later Cambrian ocean , 2011, Nature.

[25]  S. Bottrell,et al.  Low marine sulfate concentrations and the isolation of the European epicontinental sea during the Early Jurassic , 2011 .

[26]  J. Kiehl,et al.  Understanding Earth’s Deep Past: Lessons for Our Climate Future , 2011 .

[27]  R. Walker,et al.  Molybdenum isotope, multiple sulfur isotope, and redox-sensitive element behavior in early Pleistocene Mediterranean sapropels , 2010 .

[28]  M. Scranton,et al.  Stable sulfur isotopes in the water column of the Cariaco Basin , 2010 .

[29]  M. Whitehouse,et al.  Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone , 2010 .

[30]  L. Kump,et al.  Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction , 2010 .

[31]  P. Cappellen,et al.  Sulfate reducing activity and sulfur isotope fractionation by natural microbial communities in sediments of a hypersaline soda lake (Mono Lake, California) , 2010 .

[32]  L. Kump,et al.  Sulfur cycling in a stratified euxinic lake with moderately high sulfate: Constraints from quadruple S isotopes , 2010 .

[33]  Социальная педагогика,et al.  Society for Sedimentary Geology , 2010 .

[34]  M. Voss,et al.  Environmental changes in the Pearl River Estuary (China) as reflected by light stable isotopes and organic contaminants , 2010 .

[35]  D. Canfield,et al.  High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog , 2010 .

[36]  Andrea Anelli,et al.  Environmental control on the end of the Dolomia Principale/Hauptdolomit depositional system in the central Alps: Coupling sea-level and climate changes , 2010 .

[37]  A. Sessions,et al.  A Stratified Redox Model for the Ediacaran Ocean , 2010, Science.

[38]  D. Canfield,et al.  Evaluating the S-isotope fractionation associated with Phanerozoic pyrite burial , 2010 .

[39]  T. Lyons,et al.  Ancient Sulfur Cycling and Oxygenation of the Early Biosphere , 2010 .

[40]  B. Sageman,et al.  Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2 , 2010 .

[41]  P. Karcz Relationships between development of organic-rich shallow shelf facies and variation in isotopic composition of pyrite (Middle Triassic, Spitsbergen) , 2010 .

[42]  J. Grotzinger,et al.  Superheavy pyrite (δ34Spyr > δ34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: A consequence of low seawater sulfate at the dawn of animal life , 2009 .

[43]  D. Canfield,et al.  Animal evolution, bioturbation, and the sulfate concentration of the oceans , 2009, Proceedings of the National Academy of Sciences.

[44]  A. J. Kaufman,et al.  Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition , 2009 .

[45]  D. Canfield,et al.  Sulphur isotopes and the search for life: strategies for identifying sulphur metabolisms in the rock record and beyond , 2008, Geobiology.

[46]  Shihong Zhang,et al.  The age of the Nantuo Formation and Nantuo glaciation in South China , 2008 .

[47]  Stefan Schouten,et al.  Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis , 2008 .

[48]  J. Grotzinger,et al.  A paired sulfate–pyrite δ34S approach to understanding the evolution of the Ediacaran–Cambrian sulfur cycle , 2008 .

[49]  H. Strauss,et al.  Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the ∼2.2–2.1 Gyr shallow‐marine Lucknow Formation, South Africa , 2008 .

[50]  A. J. Kaufman,et al.  Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation , 2008, Proceedings of the National Academy of Sciences.

[51]  Takanori Nakano,et al.  Effect of agriculture on water quality of Lake Biwa tributaries, Japan. , 2008, The Science of the total environment.

[52]  T. Lyons,et al.  Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir , 2007 .

[53]  G. Halverson,et al.  Ediacaran growth of the marine sulfate reservoir , 2007 .

[54]  Tobin J Marks,et al.  Tuning orbital energetics in arylene diimide semiconductors. materials design for ambient stability of n-type charge transport. , 2007, Journal of the American Chemical Society.

[55]  A. J. Kaufman,et al.  Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry , 2007, Nature.

[56]  Tonggang Zhang,et al.  Sulfur and carbon isotope records from 1700 to 800 Ma carbonates of the Jixian section, northern China: Implications for secular isotope variations in Proterozoic seawater and relationships to global supercontinental events , 2007 .

[57]  M. Farabee The Geologic Time Scale , 2007 .

[58]  U. Wortmann,et al.  Effect of evaporite deposition on Early Cretaceous carbon and sulphur cycling , 2007, Nature.

[59]  D. Canfield,et al.  Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life , 2007, Science.

[60]  A. Kampschultea,et al.  The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates , 2007 .

[61]  J. Grotzinger,et al.  Oxidation of the Ediacaran Ocean , 2006, Nature.

[62]  T. Lyons,et al.  A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins , 2006 .

[63]  M. Arthur,et al.  Sulfur cycling in the aftermath of a 635-Ma snowball glaciation: Evidence for a syn-glacial sulfidic deep ocean , 2006 .

[64]  S. Bottrell,et al.  Reconstruction of changes in global sulfur cycling from marine sulfate isotopes , 2006 .

[65]  D. Canfield,et al.  Temperature and its control of isotope fractionation by a sulfate-reducing bacterium , 2006 .

[66]  Linda C. Kah,et al.  Active Microbial Sulfur Disproportionation in the Mesoproterozoic , 2005, Science.

[67]  R. V. Demicco,et al.  Model of seawater composition for the Phanerozoic , 2005 .

[68]  S. Bernasconi,et al.  A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria , 2005 .

[69]  D. Schrag,et al.  Toward a Neoproterozoic composite carbon-isotope record , 2005 .

[70]  Younjoo J. Lee,et al.  Interannual variability of temperature and salinity in shallow water: Long Island Sound, New York , 2005 .

[71]  T. Lyons,et al.  Trace sulfate in mid-Proterozoic carbonates and the sulfur isotope record of biospheric evolution , 2005 .

[72]  N. Christie‐Blick,et al.  U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations , 2005 .

[73]  T. Lowenstein,et al.  The major-ion composition of Permian seawater , 2005 .

[74]  W. Holser,et al.  Modelling the Natural Cycle of Sulphur Through Phanerozoic Time * , 2005 .

[75]  M. Arthur,et al.  Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite , 2005 .

[76]  D. Canfield The evolution of the Earth surface sulfur reservoir , 2004 .

[77]  J. Zeyer,et al.  Sulfur isotope fractionation during growth of sulfate-reducing bacteria on various carbon sources , 2004 .

[78]  Linda C. Kah,et al.  Low marine sulphate and protracted oxygenation of the Proterozoic biosphere , 2004, Nature.

[79]  C. Mizota,et al.  Carbon, nitrogen, and sulfur isotope changes and hydro-geological processes in a saline lake chain , 2004, Hydrobiologia.

[80]  J. Szaran,et al.  Nutrient fluxes and sulfur cycling in the organic-rich sediment of Makirina Bay (Central Dalmatia, Croatia). , 2004, The Science of the total environment.

[81]  A. Paytan,et al.  Seawater Sulfur Isotope Fluctuations in the Cretaceous , 2004, Science.

[82]  T. Lowenstein,et al.  Seawater chemistry and the advent of biocalcification , 2004 .

[83]  R. Berner A model for calcium, magnesium and sulfate in seawater over Phanerozoic time , 2004 .

[84]  Timothy M. Lenton,et al.  COPSE: a new model of biogeochemical cycling over Phanerozoic time , 2004 .

[85]  H. Strauss,et al.  The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates , 2004 .

[86]  D. Canfield,et al.  Annual fluctuations in sulfur isotope fractionation in the water column of a euxinic marine basin , 2004 .

[87]  A. Bekker,et al.  Dating the rise of atmospheric oxygen , 2004, Nature.

[88]  David L. Valentine,et al.  Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review , 2002, Antonie van Leeuwenhoek.

[89]  A. Savvichev,et al.  Microbial Processes of the Carbon and Sulfur Cycles in Lake Mogil'noe , 2001, Microbiology.

[90]  V. Brüchert Physiological and ecological aspects of sulfur isotope fractionation during bacterial sulfate reduction , 2004 .

[91]  L. M. Walter,et al.  Sites of anomalous organic remineralization in the carbonate sediments of South Florida, USA: The sulfur cycle and carbonate-associated sulfate , 2004 .

[92]  J. Zachos,et al.  Early Cenozoic decoupling of the global carbon and sulfur cycles , 2003 .

[93]  H. Strauss Sulphur isotopes and the early Archaean sulphur cycle , 2003 .

[94]  R. V. Demicco,et al.  Secular variation in seawater chemistry and the origin of calcium chloride basinal brines , 2003 .

[95]  J. Damsté,et al.  Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur formation , 2003 .

[96]  H. Krouse,et al.  A stable sulfur and oxygen isotopic investigation of sulfur cycling in an anoxic marine basin, Framvaren Fjord, Norway , 2003 .

[97]  D. Canfield,et al.  Calibration of Sulfate Levels in the Archean Ocean , 2002, Science.

[98]  Heinrich D. Holland,et al.  Volcanic gases, black smokers, and the great oxidation event , 2002 .

[99]  J. Horita,et al.  Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites , 2002 .

[100]  R. Amann,et al.  Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach , 2002 .

[101]  A. J. Kaufman,et al.  The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? , 2002 .

[102]  D. B. Nedwell,et al.  Estimates of sulphate reduction rates in Lake Vanda, Antarctica support the proposed recent history of the lake , 2001, Antarctic Science.

[103]  R. V. Demicco,et al.  Oscillations in Phanerozoic Seawater Chemistry: Evidence from Fluid Inclusions , 2001, Science.

[104]  M. Böttcher,et al.  Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction , 2001 .

[105]  D. Canfield,et al.  Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments , 2001 .

[106]  C. Heip,et al.  Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea , 2001 .

[107]  H. Strauss,et al.  The sulphur isotopic composition of trace sulphates in Carboniferous brachiopods: implications for coeval seawater, correlation with other geochemical cycles and isotope stratigraphy , 2001 .

[108]  D. Canfield Isotope fractionation by natural populations of sulfate-reducing bacteria , 2001 .

[109]  B. Spiro,et al.  Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures , 2001 .

[110]  B. Jørgensen,et al.  Controls on stable sulfur isotope fractionation during bacterial sulfate reduction in Arctic sediments , 2001 .

[111]  Donald E. Canfield,et al.  Isotopic evidence for microbial sulphate reduction in the early Archaean era , 2001, Nature.

[112]  J. Kuever,et al.  Diversity of Sulfur Isotope Fractionations by Sulfate-Reducing Prokaryotes , 2001, Applied and Environmental Microbiology.

[113]  L. Schwark,et al.  The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate , 2001 .

[114]  Mark D. Morgan,et al.  Sulfur cycling in wetland peat of the New Jersey Pinelands and its effect on stream water chemistry , 2000 .

[115]  D. Donovan,et al.  Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures , 2000 .

[116]  P. Albrecht,et al.  Timing of early diagenetic sulfurization of organic matter: a precursor-product relationship in Holocene sediments of the anoxic Cariaco Basin, Venezuela☆ , 2000 .

[117]  D. Canfield,et al.  The evolution of the sulfur cycle , 1999 .

[118]  L. M. Walter,et al.  Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, U.S.A. , 1999 .

[119]  B. Mayer,et al.  A 15,000-year stable isotope record from sediments of Lake Steisslingen, Southwest Germany , 1999 .

[120]  Michael A. Arthur,et al.  Interpreting carbon-isotope excursions: carbonates and organic matter , 1999 .

[121]  H. Strauss GEOLOGICAL EVOLUTION FROM ISOTOPE PROXY SIGNALS : SULFUR , 1999 .

[122]  V. Brüchert,et al.  Stable Sulfur Isotopic Evidence for Historical Changes of Sulfur Cycling in Estuarine Sediments from Northern Florida , 1999 .

[123]  J. Chanton,et al.  Plankton and dissolved inorganic carbon isotopic composition in a river-dominated estuary: Apalachicola Bay, Florida , 1999 .

[124]  Aharon Oren,et al.  Bioenergetic Aspects of Halophilism , 1999, Microbiology and Molecular Biology Reviews.

[125]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[126]  G. Strauch,et al.  Sulfate Reduction in a Lake and the Groundwater of a Former Lignite Mining Area Studied by Stable Sulfur and Carbon Isotopes , 1998 .

[127]  R. Wilkin,et al.  Pyrite formation in the water column and sediments of a meromictic lake , 1998 .

[128]  A. Paytan,et al.  Sulfur isotopic composition of cenozoic seawater sulfate , 1998, Science.

[129]  J. Cornwell,et al.  Variability of stable sulfur isotopic ratios in Spartina alterniflora , 1998 .

[130]  A. Bates,et al.  Speciation and isotopic composition of sedimentary sulfur in the Everglades, Florida, USA , 1998 .

[131]  D. Canfield,et al.  Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. , 1997, Geochimica et cosmochimica acta.

[132]  T. Lyons Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea , 1997 .

[133]  H. Strauss The isotopic composition of sedimentary sulfur through time , 1997 .

[134]  G. Sohlenius,et al.  Authigenic sulfide and carbonate mineral formation in Holocene sediments of the Baltic Sea , 1997 .

[135]  H. Barnes,et al.  THE SIZE DISTRIBUTION OF FRAMBOIDAL PYRITE IN MODERN SEDIMENTS : AN INDICATOR OF REDOX CONDITIONS , 1996 .

[136]  Donald E. Canfield,et al.  Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.

[137]  V. Brüchert,et al.  Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA , 1996 .

[138]  D. Canfield,et al.  Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle , 1996, Nature.

[139]  L. Hardie Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. , 1996 .

[140]  J. Beatty,et al.  The sulfur cycle in the chemocline of a meromictic salt lake , 1996 .

[141]  A. Giblin,et al.  Stable Sulfur Isotopic Compositions of Chromium-Reducible Sulfur in Lake Sediments , 1995 .

[142]  P. Hatcher,et al.  Sulfur geochemistry of organic-rich sediments from Mud Lake, Florida, U.S.A. , 1995 .

[143]  D. Canfield,et al.  The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. , 1994, Science.

[144]  William C. Burnett,et al.  Speciation and isotopic composition of sulfur in sediments from Jellyfish Lake, Palau , 1993 .

[145]  D. Canfield,et al.  The reactivity of sedimentary iron minerals toward sulfide , 1992 .

[146]  L. Pratt,et al.  Isotopic composition and speciation of sulfur in the Miocene Monterey Formation: Reevaluation of sulfur reactions during early diagenesis in marine environments , 1992 .

[147]  D. J. Casagrande,et al.  Sulfur distribution and isotopic composition in peats from the Okefenokee Swamp, Georgia and the Everglades, Florida , 1991 .

[148]  S. King,et al.  Stable isotope studies of the carbon, nitrogen and sulfur cycles in the Black Sea and the Cariaco Trench , 1991 .

[149]  J. Burdett,et al.  A Neogene seawater sulfur isotope age curve from calcareous pelagic microfossils , 1989 .

[150]  R. Howarth,et al.  Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt‐marsh estuaries of Sapelo Island, Georgia1 , 1987 .

[151]  B. Fry Stable sulfur isotopic distributions and sulfate reduction in lake sediments of the Adirondack Mountains, New York , 1986 .

[152]  B. Fry Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York State. , 1986, Limnology and oceanography.

[153]  J. Nriagu,et al.  Distribution and isotopic composition of sulfur in lake sediments of northern Ontario , 1985 .

[154]  I. R. Kaplan Stable Isotopes of Sulfur, Nitrogen and Deuterium in Recent Marine Environments , 1983 .

[155]  B. Jørgensen Mineralization of organic matter in the sea bed—the role of sulphate reduction , 1982, Nature.

[156]  Gorlenko Vm,et al.  Microbiologic processes in meromictic Lake Sakovo , 1981 .

[157]  I. Kaplan,et al.  Stable isotope composition of dissolved sulfate and hydrogen sulfide in the Black Sea , 1980 .

[158]  J. Nriagu,et al.  Isotopic variation as an index of sulphur pollution in lakes around Sudbury, Ontario , 1978, Nature.

[159]  B. Jørgensen,et al.  Solar Lake (Sinai). 5. The sulfur cycle of the bcnthic cyanobacterial mats1 , 1977 .

[160]  M. Schidlowski,et al.  Sulfur isotope variations in marine sulfate evaporites and the phanerozoic oxygen budget , 1977 .

[161]  J. Nriagu,et al.  Emission of sulfur from Lake Ontario sediments , 1976 .

[162]  L. A. Chambers,et al.  Fractionation of sulfur isotopes by continuous cultures of Desulfovibrio desulfuricans. , 1975, Canadian journal of microbiology.

[163]  D. Rickard Kinetics and mechanism of pyrite formation at low temperatures , 1975 .

[164]  H. Wada,et al.  Stable isotope of water and studies on the origin and geological history salts in the Lake Vanda area, Antarctica , 1975 .

[165]  C. Rees A steady-state model for sulphur isotope fractionation in bacterial reduction processes , 1973 .

[166]  M. Hartmann,et al.  δ34S-Werte in rezenten Meeressedimenten und ihre Deutung am Beispiel einiger Sedimentprofile aus der westlichen Ostsee , 1968 .

[167]  H. Thode,et al.  The mechanism of the bacterial reduction of sulphate and of sulphite from isotope fractionation studies , 1968 .

[168]  M. L. Jensen,et al.  The kinetic isotope effect in the bacterial reduction and oxidation of sulfur , 1964 .

[169]  S. Rittenberg,et al.  MICROBIOLOGICAL FRACTIONATION OF SULPHUR ISOTOPES. , 1964, Journal of general microbiology.

[170]  K. O. Emery,et al.  The distribution and isotopic abundance of sulphur in recent marine sediments off southern California , 1963 .

[171]  Rudolph A. Marcus,et al.  On the theory of oxidation—Reduction reactions involving electron transfer. V. Comparison and properties of electrochemical and chemical rate constants , 1963 .