The Scaling Limit of Lattice Trees in High Dimensions

Abstract:We prove that above eight dimensions the scaling limit of sufficiently spread-out lattice trees is the variant of super-Brownian motion known as integrated super-Brownian excursion (ISE), as conjectured by Aldous. The same is true for nearest-neighbour lattice trees in sufficiently high dimensions. The proof uses the lace expansion.

[1]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[2]  Douglas J. Klein,et al.  Rigorous results for branched polymer models with excluded volume , 1981 .

[3]  E. J. J. Rensburg,et al.  On the number of trees in Zd , 1992 .

[4]  Gordon Slade,et al.  Lattice trees and super-Brownian motion , 1997, Canadian Mathematical Bulletin.

[5]  G. Slade,et al.  Mean-field critical behaviour for percolation in high dimensions , 1990 .

[6]  Neal Madras A rigorous bound on the critical exponent for the number of lattice trees, animals, and polygons , 1995 .

[7]  T. Reisz A convergence theorem for lattice Feynman integrals with massless propagators , 1988 .

[8]  David Aldous,et al.  Tree-based models for random distribution of mass , 1993 .

[9]  Gordon Slade,et al.  Self-avoiding walk in five or more dimensions I. The critical behaviour , 1992 .

[10]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[11]  Donald A. Dawson,et al.  Measure-Valued processes and renormalization of branching particle systems , 1999 .

[12]  Gordon Slade,et al.  Mean-Field Behaviour and the Lace Expansion , 1994 .

[13]  Thomas Spencer,et al.  Self-avoiding walk in 5 or more dimensions , 1985 .

[14]  Gordon Slade,et al.  On the upper critical dimension of lattice trees and lattice animals , 1990 .

[15]  Gordon Slade,et al.  The number and size of branched polymers in high dimensions , 1992 .

[16]  Gordon Slade,et al.  THE LACE EXPANSION FOR SELF-AVOIDING WALK IN FIVE OR MORE DIMENSIONS , 1992 .

[17]  Michael Aizenman,et al.  On the Number of Incipient Spanning Clusters , 1997 .

[18]  Tom C. Lubensky,et al.  Statistics of lattice animals and dilute branched polymers , 1979 .

[19]  J. Gall The uniform random tree in a Brownian excursion , 1993 .

[20]  Yakov G. Sinai,et al.  Self-avoiding walks in five or more dimensions: polymer expansion approach , 1995 .

[21]  N. Madras,et al.  A nonlocal Monte Carlo algorithm for lattice trees , 1992 .

[22]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[23]  Wei-Shih Yang,et al.  Gaussian limit for critical oriented percolation in high dimensions , 1995 .

[24]  Wei-Shih Yang,et al.  Triangle Condition for Oriented Percolation in High Dimensions , 1993 .

[25]  Mathew D. Penrose,et al.  Self-avoiding walks and trees in spread-out lattices , 1994 .

[26]  Charles M. Newman,et al.  Tree graph inequalities and critical behavior in percolation models , 1984 .

[27]  Steven E. Golowich,et al.  A new approach to the long-time behavior of self-avoiding random walks , 1992 .

[28]  N. Madras,et al.  THE SELF-AVOIDING WALK , 2006 .

[29]  D. Aldous Stochastic Analysis: The Continuum random tree II: an overview , 1991 .