The use of genome-level characters for phylogenetic reconstruction.

Now that large-scale genome-sequencing projects are sampling many organismal lineages, it is becoming possible to compare large data sets of not only DNA and protein sequences, but also genome-level features, such as gene arrangements and the positions of mobile genetic elements. Although it is unlikely that comparisons of such features will address a large number of evolutionary branch points across the broad tree of life owing to the infeasibility of such sampling, they have great potential for resolving many crucial, contested relationships for which no other data seem promising. Here, I discuss the advancements, advantages, methods, and problems of the use of genome-level characters for reconstructing evolutionary relationships.

[1]  S. Brenner,et al.  Late changes in spliceosomal introns define clades in vertebrate evolution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Yangrae Cho,et al.  The gain of three mitochondrial introns identifies liverworts as the earliest land plants , 1998, Nature.

[3]  J. Boore,et al.  Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: gene arrangements indicate that Platyhelminths are Eutrochozoans. , 2001, Molecular biology and evolution.

[4]  J. Boore,et al.  Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. , 1998, Current opinion in genetics & development.

[5]  Timothy M. Collins,et al.  Deducing the pattern of arthropod phytogeny from mitochondrial DNA rearrangements , 1995, Nature.

[6]  M. Smith,et al.  A novel mitochondrial gene order in the crinoid echinoderm Florometra serratissima. , 2001, Molecular biology and evolution.

[7]  R B Russell,et al.  Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Boore,et al.  Phylogenetic position of the Pentastomida and (pan)crustacean relationships , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  M. Goodman,et al.  Reexamination of the African hominoid trichotomy with additional sequences from the primate beta-globin gene cluster. , 1992, Molecular phylogenetics and evolution.

[10]  Manuel A. S. Santos,et al.  Driving change: the evolution of alternative genetic codes. , 2004, Trends in genetics : TIG.

[11]  N. Okada,et al.  Retroposon mapping in molecular systematics. , 2004, Methods in molecular biology.

[12]  A. Austin,et al.  Evolutionary dynamics of a mitochondrial rearrangement "hot spot" in the Hymenoptera. , 1999, Molecular biology and evolution.

[13]  D. Clayton Transcription and replication of animal mitochondrial DNAs. , 1992, International review of cytology.

[14]  N Okada,et al.  Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Tandy J. Warnow,et al.  Fast Phylogenetic Methods for the Analysis of Genome Rearrangement Data: An Empirical Study , 2001, Pacific Symposium on Biocomputing.

[16]  N. Lartillot,et al.  Animal evolution. The end of the intermediate taxa? , 1999, Trends in genetics : TIG.

[17]  Dario Leister,et al.  NUMTs in sequenced eukaryotic genomes. , 2004, Molecular biology and evolution.

[18]  J. Boore,et al.  Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences. , 2004, Molecular phylogenetics and evolution.

[19]  T. Kuroiwa,et al.  Phylogeny of Plastids Based on Cladistic Analysis of Gene Loss Inferred from Complete Plastid Genome Sequences , 2003, Journal of Molecular Evolution.

[20]  J. Boore,et al.  Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. , 2000, Molecular biology and evolution.

[21]  E. Koonin,et al.  Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. , 2003, Genome research.

[22]  T. Kunisawa Gene arrangements and phylogeny in the class Proteobacteria. , 2001, Journal of theoretical biology.

[23]  P. Flook,et al.  Homoplastic rearrangements of insect mitochondrial tRNA genes , 1995, Naturwissenschaften.

[24]  Michael J. Smith,et al.  The phylogeny of echinoderm classes based on mitochondrial gene arrangements , 1993, Journal of Molecular Evolution.

[25]  M. Sogin,et al.  Ancestral relationships of the major eukaryotic lineages. , 1996, Microbiologia.

[26]  P. Holland,et al.  Rare genomic changes as a tool for phylogenetics. , 2000, Trends in ecology & evolution.

[27]  Avin,et al.  Amphioxus Mitochondrial DNA , Chordate Phylogeny , and the Limits of Inference Based on Comparisons of Sequences , 2003 .

[28]  W. Black,et al.  Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. , 1998, Molecular biology and evolution.

[29]  J. Palmer,et al.  RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. , 1991, Cell.

[30]  Paramvir S. Dehal,et al.  A phylogenomic gene cluster resource: the Phylogenetically Inferred Groups (PhIGs) database , 2006, BMC Bioinformatics.

[31]  S. Fitz-Gibbon,et al.  Using Homolog Groups to Create a Whole-Genomic Tree of Free-Living Organisms: An Update , 2002, Journal of Molecular Evolution.

[32]  B. Snel,et al.  Genome trees and the nature of genome evolution. , 2005, Annual review of microbiology.

[33]  M. House,et al.  The Origin of major invertebrate groups , 1981 .

[34]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[35]  T. Miyata,et al.  Mitochondrial DNA-like sequences in the human nuclear genome. Characterization and implications in the evolution of mitochondrial DNA. , 1985, Journal of molecular biology.

[36]  M. Nishida,et al.  Variations in mitochondrial tRNA gene organization of reptiles as phylogenetic markers. , 1995, Molecular biology and evolution.

[37]  M. Batzer,et al.  Alu elements and hominid phylogenetics , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. Barker,et al.  The value of idiosyncratic markers and changes to conserved tRNA sequences from the mitochondrial genome of hard ticks (Acari: Ixodida: Ixodidae) for phylogenetic inference. , 2003, Systematic biology.

[39]  J. Macey,et al.  Evolution and phylogenetic information content of mitochondrial genomic structural features illustrated with acrodont lizards. , 2000, Systematic biology.

[40]  J. Boore,et al.  The mitochondrial genome of the Sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca. , 2002, Molecular biology and evolution.

[41]  M. Nishida,et al.  Retroposition of the AFC Family of SINEs (Short Interspersed Repetitive Elements) Before and During the Adaptive Radiation of Cichlid Fishes in Lake Malawi and Related Inferences About Phylogeny , 2001, Journal of Molecular Evolution.

[42]  Daniel H. Huson,et al.  Phylogenetic trees based on gene content , 2004, Bioinform..

[43]  S. Pääbo,et al.  Rearrangements of mitochondrial transfer RNA genes in marsupials , 1991, Journal of Molecular Evolution.

[44]  J. Boore,et al.  The mitochondrial genome of Phoronis architecta--comparisons demonstrate that phoronids are lophotrochozoan protostomes. , 2004, Molecular biology and evolution.

[45]  D. Penny,et al.  Genome-scale phylogeny and the detection of systematic biases. , 2004, Molecular biology and evolution.

[46]  D. Mindell,et al.  Multiple independent origins of mitochondrial gene order in birds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. Boore,et al.  Complete sequence, gene arrangement, and genetic code of mitochondrial DNA of the cephalochordate Branchiostoma floridae (Amphioxus) , 1999, Molecular biology and evolution.

[48]  Y. Peer,et al.  Microsporidia: accumulating molecular evidence that a group of amitochondriate and suspectedly primitive eukaryotes are just curious fungi. , 2000, Gene.

[49]  J. Boore Animal mitochondrial genomes. , 1999, Nucleic acids research.

[50]  D. Sankoff,et al.  Gene Order Breakpoint Evidence in Animal Mitochondrial Phylogeny , 1999, Journal of Molecular Evolution.

[51]  J. Schmitz,et al.  SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates. , 2001, Genetics.

[52]  N. Okada,et al.  SINEs of speciation: tracking lineages with retroposons. , 2004, Trends in ecology & evolution.

[53]  Jeffrey L. Boore,et al.  Gene translocation links insects and crustaceans , 1998, Nature.

[54]  J. Boore,et al.  Beyond linear sequence comparisons: the use of genome-level characters for phylogenetic reconstruction , 2004, Philosophical Transactions of the Royal Society B: Biological Sciences.

[55]  Patrick S. Schnable,et al.  Evaluation of five ab initio gene prediction programs for the discovery of maize genes , 2005, Plant Molecular Biology.

[56]  Yangrae Cho,et al.  Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Jim Leebens-Mack,et al.  Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. , 2005, Molecular biology and evolution.

[58]  B. Snel,et al.  Genome phylogeny based on gene content , 1999, Nature Genetics.

[59]  B. Schierwater,et al.  Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[60]  N. Okada,et al.  Molecular evidence from retroposons that whales form a clade within even-toed ungulates , 1997, Nature.

[61]  Kenny Q. Ye,et al.  Large-Scale Copy Number Polymorphism in the Human Genome , 2004, Science.

[62]  S. Fitz-Gibbon,et al.  Whole genome-based phylogenetic analysis of free-living microorganisms. , 1999, Nucleic acids research.

[63]  E. Eichler,et al.  Segmental duplications and copy-number variation in the human genome. , 2005, American journal of human genetics.

[64]  H. Philippe,et al.  How good are deep phylogenetic trees? , 1998, Current opinion in genetics & development.

[65]  J. Palmer,et al.  RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution , 1991, Cell.

[66]  N Okada,et al.  SINE insertions: powerful tools for molecular systematics. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[67]  D. Sankoff,et al.  An ancestral mitochondrial DNA resembling a eubacterial genome in miniature , 1997, Nature.

[68]  Daniel Pinkel,et al.  Large-scale variation among human and great ape genomes determined by array comparative genomic hybridization. , 2003, Genome research.

[69]  Pavel A Pevzner,et al.  Mammalian phylogenomics comes of age. , 2004, Trends in genetics : TIG.

[70]  J. Schmitz,et al.  Primate jumping genes elucidate strepsirrhine phylogeny. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  M. Miyamoto,et al.  Phylogenetic relations of humans and African apes from DNA sequences in the psi eta-globin region. , 1987, Science.

[72]  M. Hasegawa,et al.  Retroposon analysis of major cetacean lineages: The monophyly of toothed whales and the paraphyly of river dolphins , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[73]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[74]  Sean B. Carroll,et al.  Hox genes in brachiopods and priapulids and protostome evolution , 1999, Nature.