The Effect of Reference Point on Stochastic Network Equilibrium

Following studies of human decision making under risk and uncertainty, an extensive evidence of loss aversion and asymmetric risk-taking behavior around a reference point was found. Prospect theory proposes an alternative framework to the traditional risk-taking modeling in travel behavior, which might be too simplistic. This paper examines the possibility of applying prospect theory for modeling stochastic network equilibrium, and presents an investigation of the effect of reference point value on such equilibrium. Conceptual and methodological issues that could be addressed by further research in transportation research are suggested.

[1]  A. Tversky,et al.  Loss Aversion in Riskless Choice: A Reference-Dependent Model , 1991 .

[2]  Erel Avineri,et al.  Sensitivity to Uncertainty: Need for a Paradigm Shift , 2003 .

[3]  Larry G. Epstein,et al.  First order risk aversion and the equity premium puzzle , 1990 .

[4]  Peter Bonsall Predicting Travellers' Response to Uncertainty , 2001 .

[5]  Ryuichi Kitamura,et al.  Reference Points in Commuter Departure Time Choice: A Prospect Theoretic Test of Alternative Decision Frames , 2004, J. Intell. Transp. Syst..

[6]  Henrik Kristensen,et al.  Adoption of cognitive reference points in negotiations , 1997 .

[7]  Richard Gonzalez,et al.  Curvature of the Probability Weighting Function , 1996 .

[8]  Hani S. Mahmassani,et al.  DYNAMIC ASPECTS OF DEPARTURE-TIME CHOICE BEHAVIOR IN A COMMUTING SYSTEM: THEORETICAL FRAMEWORK AND EXPERIMENTAL ANALYSIS , 1985 .

[9]  Michele Bernasconi,et al.  Tax evasion and orders of risk aversion , 1998 .

[10]  H. Fennema,et al.  Measuring the Utility of Losses by Means of the Tradeoff Method , 1998 .

[11]  K. Arrow,et al.  Aspects of the theory of risk-bearing , 1966 .

[12]  Pitu Mirchandani,et al.  Generalized Traffic Equilibrium with Probabilistic Travel Times and Perceptions , 1987, Transp. Sci..

[13]  I. Erev,et al.  Comonotonic independence: The critical test between classical and rank-dependent utility theories , 1994 .

[14]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[15]  Richard J. Herrnstein,et al.  The matching law , 1997 .

[16]  J. March Learning to be risk averse. , 1996 .

[17]  Colin Camerer,et al.  Violations of the betweenness axiom and nonlinearity in probability , 1994 .

[18]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[19]  Sharon R. Peck,et al.  Alternative Models of Price Behavior in Dyadic Negotiations: Market Prices, Reservation Prices, and Negotiator Aspirations , 1994 .

[20]  Richard Gonzalez,et al.  On the Shape of the Probability Weighting Function , 1999, Cognitive Psychology.

[21]  M. Abdellaoui Parameter-Free Elicitation of Utility and Probability Weighting Functions , 2000 .

[22]  Robert B. Noland,et al.  Travel-time uncertainty, departure time choice, and the cost of morning commutes , 1995 .

[23]  Hani S. Mahmassani,et al.  On Boundedly Rational User Equilibrium in Transportation Systems , 1987, Transp. Sci..

[24]  R. Thaler,et al.  Myopic Loss Aversion and the Equity Premium Puzzle , 1993 .

[25]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[26]  Kenneth A. Small,et al.  THE SCHEDULING OF CONSUMER ACTIVITIES: WORK TRIPS , 1982 .

[27]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[28]  Colin Camerer An experimental test of several generalized utility theories , 1989 .

[29]  G. Shafer,et al.  Expected Utility Hypotheses and the Allais Paradox. , 1982 .

[30]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[31]  Hani S. Mahmassani,et al.  Transferring insights into commuter behavior dynamics from laboratory experiments to field surveys , 2000 .

[32]  A. Tversky,et al.  Options traders exhibit subadditive decision weights , 1996 .

[33]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .

[34]  D. Kahneman,et al.  Testing competing models of loss aversion: an adversarial collaboration , 2005 .

[35]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[36]  D. Fudenberg,et al.  The Theory of Learning in Games , 1998 .

[37]  D. Prelec The Probability Weighting Function , 1998 .

[38]  L. J. Savage,et al.  The Utility Analysis of Choices Involving Risk , 1948, Journal of Political Economy.

[39]  A. Tversky,et al.  The Effect of Myopia and Loss Aversion on Risk Taking: An Experimental Test , 1997 .

[40]  J. L. Pinto,et al.  A Parameter-Free Elicitation of the Probability Weighting Function in Medical Decision Analysis , 2000 .

[41]  P. Fishburn,et al.  TWO‐PIECE VON NEUMANN‐MORGENSTERN UTILITY FUNCTIONS* , 1979 .

[42]  P. Bovy,et al.  ROUTE CHOICE: WAYFINDING IN TRANSPORT NETWORKS , 1990 .

[43]  J. Prashker,et al.  Violations of Expected Utility Theory in Route-Choice Stated Preferences: Certainty Effect and Inflation of Small Probabilities , 2004 .

[44]  Liu Yu-li,et al.  Myopic Loss Aversion and the Equity Premium , 2003 .

[45]  A. Tversky,et al.  Weighing Risk and Uncertainty , 1995 .

[46]  David E. Boyce,et al.  Comparisons of Deterministic and Stochastic Traffic Loading Models , 1997 .

[47]  Will Recker,et al.  Travel Time Reliability with Risk-Sensitive Travelers , 2001 .

[48]  Michael G.H. Bell,et al.  Reliability of transport networks , 2000 .

[49]  Erel Avineri,et al.  A Cumulative Prospect Theory Approach to Passengers Behavior Modeling: Waiting Time Paradox Revisited , 2004, J. Intell. Transp. Syst..

[50]  J. Pratt RISK AVERSION IN THE SMALL AND IN THE LARGE11This research was supported by the National Science Foundation (grant NSF-G24035). Reproduction in whole or in part is permitted for any purpose of the United States Government. , 1964 .