Flexural strength of silica fume, fly ash, and metakaolin of hardened cement paste after exposure to elevated temperatures

[1]  Éva Lublóy,et al.  The impact of metakaolin, silica fume and fly ash on the temperature resistance of high strength cement paste , 2021, Journal of Thermal Analysis and Calorimetry.

[2]  Éva Lublóy,et al.  Evaluation of the mechanical properties of high-strength cement paste at elevated temperatures using metakaolin , 2020, Journal of Thermal Analysis and Calorimetry.

[3]  M. Cao,et al.  Effects of high temperature and post-fire-curing on compressive strength and microstructure of calcium carbonate whisker-fly ash-cement system , 2020 .

[4]  H. Zabed,et al.  Effect of elevated temperatures on compressive strength and microstructure of cement paste containing palm oil clinker powder , 2018, Construction and Building Materials.

[5]  G. Balázs,et al.  Fire Resistance of Concretes with Blended Cements , 2018 .

[6]  Sardar Kashif Ur Rehman,et al.  A Sustainable Graphene Based Cement Composite , 2017 .

[7]  G. Balázs,et al.  Improved fire resistance by using Portland-pozzolana or Portland-fly ash cements , 2017, Journal of Thermal Analysis and Calorimetry.

[8]  Éva Lublóy-Viktor Hlavička Bond after fire , 2017 .

[9]  D. Hordijk,et al.  High Tech Concrete: Where Technology and Engineering Meet , 2017 .

[10]  O. Gencel,et al.  Combined effect of silica fume and expanded vermiculite on properties of lightweight mortars at ambient and elevated temperatures , 2015 .

[11]  M. Fener,et al.  Microstructural examination of the effect of elevated temperature on the concrete containing clinoptilolite , 2014 .

[12]  Yousef A. Al-Salloum,et al.  Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures , 2012 .

[13]  T. Parhizkar,et al.  SELF-COMPACTING CONCRETE CONTAINING DIFFERENT POWDERS AT ELEVATED TEMPERATURES-MECHANICAL PROPERTIES AND CHANGES IN THE PHASE COMPOSITION OF THE PASTE , 2011 .

[14]  S. Nehme,et al.  The effect of the concrete components on the temperature endurance , 2009 .

[15]  G. Peng,et al.  Change in microstructure of hardened cement paste subjected to elevated temperatures , 2008 .

[16]  Kristian Dahl Hertz,et al.  Concrete strength for fire safety design , 2005 .

[17]  Salman Azhar,et al.  Performance of metakaolin concrete at elevated temperatures , 2003 .

[18]  Naji M. Al-Mutairi,et al.  Assessment of Fire-Damaged Kuwaiti Structures , 1999 .

[19]  Y. N. Chan,et al.  Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures , 1999 .

[20]  Fernando A. Branco,et al.  Effects of Formwork Fires in Bridge Construction , 1997 .

[21]  Z. Bažant,et al.  Concrete at High Temperatures: Material Properties and Mathematical Models , 1996 .

[22]  Ulrich Schneider,et al.  Compressive strength for service and accident conditions , 1995 .

[23]  G. A. Khoury,et al.  Material and environmental factors influencing the compressive strength of unsealed cement paste and concrete at high temperatures , 1993 .

[24]  Pierre-Claude Aitcin,et al.  Concrete structure, properties and materials , 1986 .

[25]  K. Kendall,et al.  Flexural strength and porosity of cements , 1981, Nature.

[26]  F. S. Rostásy,et al.  Changes of pore structure of cement mortars due to temperature , 1980 .