The traveling salesman problem in graphs with 3-edge cutsets

This paper analyzes decomposition properties of a graph that, when they occur, permit a polynomial solution of the traveling salesman problem and a description of the traveling salesman polytope by a system of linear equalities and inequalities. The central notion is that of a 3-edge cutset, namely, a set of 3 edges that, when removed, disconnects the graph. Conversely, our approach can be used to construct classes of graphs for which there exists a polynomial algorithm for the traveling salesman problem. The approach is illustrated on two examples, Halin graphs and prismatic graphs.

[1]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[2]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[3]  J. Edmonds Matroid Intersection , 2022 .

[4]  H. D. Ratliff,et al.  Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem , 1983, Oper. Res..

[5]  George J. Minty,et al.  On maximal independent sets of vertices in claw-free graphs , 1980, J. Comb. Theory B.

[6]  Martin Grötschel,et al.  On the Monotone Symmetric Travelling Salesman Problem: Hypohamiltonian/Hypotraceable Graphs and Facets , 1980, Math. Oper. Res..

[7]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[8]  Andrzej Proskurowski,et al.  On Halin graphs , 1983 .

[9]  Martin Grötschel,et al.  On the symmetric travelling salesman problem I: Inequalities , 1979, Math. Program..

[10]  Gérard Cornuéjols,et al.  The Travelling Salesman Polytope and {0, 2}-Matchings , 1982 .

[11]  L. Lovász,et al.  On a Family of Planar Bicritical Graphs , 1975 .

[12]  M. Grötschel,et al.  New aspects of polyhedral theory , 1982 .

[13]  Najiba Sbihi,et al.  Algorithme de recherche d'un stable de cardinalite maximum dans un graphe sans etoile , 1980, Discret. Math..

[14]  Robert S. Garfinkel,et al.  Minimizing Wallpaper Waste, Part 1: A Class of Traveling Salesman Problems , 1977, Oper. Res..

[15]  Martin Grötschel,et al.  On the symmetric travelling salesman problem II: Lifting theorems and facets , 1979, Math. Program..

[16]  Eugene L. Lawler,et al.  A solvable case of the traveling salesman problem , 1971, Math. Program..

[17]  Leslie E. Trotter,et al.  On stable set polyhedra for K1, 3-free graphs , 1981, J. Comb. Theory, Ser. B.

[18]  Mouloud Boulala,et al.  Polytope des independants d'un graphe serie-parallele , 1979, Discret. Math..

[19]  Maciej M. Syslo,et al.  A new solvable case of the traveling salesman problem , 1973, Math. Program..

[20]  William R. Pulleyblank,et al.  Clique Tree Inequalities and the Symmetric Travelling Salesman Problem , 1986, Math. Oper. Res..

[21]  H. Crowder,et al.  Solving Large-Scale Symmetric Travelling Salesman Problems to Optimality , 1980 .

[22]  M. Cutler Efficient special case algorithms for the n-line planar traveling salesman problem , 1980, Networks.

[23]  William R. Pulleyblank,et al.  Ear Decompositions of Elementary Graphs and GF2-rank of Perfect Matchings , 1982 .

[24]  Gérard Cornuéjols,et al.  Halin graphs and the travelling salesman problem , 1983, Math. Program..

[25]  R. Gomory,et al.  Sequencing a One State-Variable Machine: A Solvable Case of the Traveling Salesman Problem , 1964 .

[26]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[27]  Journal of the Association for Computing Machinery , 1961, Nature.