The JCMT Gould Belt Survey: first results from the SCUBA-2 observations of the Ophiuchus molecular cloud and a virial analysis of its prestellar core population

In this paper, we present the first observations of the Ophiuchus molecular cloud performed as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey (GBS) with the SCUBA-2 instrument. We demonstrate methods for combining these data with previous HARP CO, Herschel, and IRAM N2H+ observations in order to accurately quantify the properties of the SCUBA-2 sources in Ophiuchus. We produce a catalogue of all of the sources found by SCUBA-2. We separate these into protostars and starless cores. We list all of the starless cores and perform a full virial analysis, including external pressure. This is the first time that external pressure has been included in this level of detail. We find that the majority of our cores are either bound or virialized. Gravitational energy and external pressure are on average of a similar order of magnitude, but with some variation from region to region. We find that cores in the Oph A region are gravitationally bound prestellar cores, while cores in the Oph C and E regions are pressure-confined. We determine that N2H+ is a good tracer of the bound material of prestellar cores, although we find some evidence for N2H+ freeze-out at the very highest core densities. We find that non-thermal linewidths decrease substantially between the gas traced by C18O and that traced by N2H+, indicating the dissipation of turbulence at higher densities. We find that the critical Bonnor–Ebert stability criterion is not a good indicator of the boundedness of our cores. We detect the pre-brown dwarf candidate Oph B-11 and find a flux density and mass consistent with previous work. We discuss regional variations in the nature of the cores and find further support for our previous hypothesis of a global evolutionary gradient across the cloud from south-west to north-east, indicating sequential star formation across the region.

[1]  E. Rosolowsky,et al.  The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud , 2014, 1411.1428.

[2]  N. Peretto,et al.  Reconstructing the density and temperature structure of prestellar cores from Herschel data: A case study for B68 and L1689B , 2013, 1311.5086.

[3]  Mark Taylor,et al.  Astronomical Data Analysis Software and Systems XXII , 2013 .

[4]  Canadian Institute for Theoretical Astrophysics,et al.  First results from the Herschel Gould Belt Survey in Taurus , 2013, 1304.4098.

[5]  A. Duarte-Cabral,et al.  THE HERSCHEL AND JCMT GOULD BELT SURVEYS: CONSTRAINING DUST PROPERTIES IN THE PERSEUS B1 CLUMP WITH PACS, SPIRE, AND SCUBA-2 , 2013, 1303.1529.

[6]  Per Friberg,et al.  Scuba-2: On-sky calibration using submillimetre standard sources , 2013, 1301.3773.

[7]  Douglas Scott,et al.  Scuba-2: Iterative map-making with the sub-millimetre user reduction facility , 2013, 1301.3652.

[8]  P. A. R. Ade,et al.  SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell Telescope , 2013, 1301.3650.

[9]  P. Andre',et al.  Interferometric Identification of a Pre–Brown Dwarf , 2012, Science.

[10]  N. Peretto,et al.  The molecular gas content of the Pipe Nebula - I. Direct evidence of outflow-generated turbulence in B59? , 2012, 1205.4100.

[11]  G. Fuller,et al.  CO depletion in the Gould Belt clouds , 2012 .

[12]  D. Johnstone,et al.  Molecular line contamination in the SCUBA-2 450 and 850 μm continuum data , 2012, 1204.6180.

[13]  K. Sandstrom,et al.  Common-Resolution Convolution Kernels for Space- and Ground-Based Telescopes , 2011, 1106.5065.

[14]  A. Whitworth,et al.  The initial conditions of isolated star formation – X. A suggested evolutionary diagram for pre-stellar cores , 2011, 1106.1885.

[15]  R. B. Barreiro,et al.  Planck early results. XXIII. The first all-sky survey of Galactic cold clumps , 2011 .

[16]  Sergio Molinari,et al.  Source extraction and photometry for the far-infrared and sub-millimeter continuum in the presence of complex backgrounds , 2010, 1011.3946.

[17]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[18]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[19]  M. Sauvage,et al.  The Aquila prestellar core population revealed by Herschel , 2010, 1005.2981.

[20]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[21]  J. Foster,et al.  DIRECT OBSERVATION OF A SHARP TRANSITION TO COHERENCE IN DENSE CORES , 2010, 1002.2946.

[22]  D. Padgett,et al.  THE MASS DISTRIBUTION OF STARLESS AND PROTOSTELLAR CORES IN GOULD BELT CLOUDS , 2010, 1001.0978.

[23]  D. Ward-Thompson,et al.  The JCMT Legacy Survey of the Gould Belt: a first look at Orion B with HARP , 2009, 0908.4162.

[24]  J. Francesco,et al.  THE INITIAL CONDITIONS OF CLUSTERED STAR FORMATION. II. N2H+ OBSERVATIONS OF THE OPHIUCHUS B CORE , 2009, 0911.3922.

[25]  T. Jenness,et al.  HARP/ACSIS: a submillimetre spectral imaging system on the James Clerk Maxwell Telescope , 2009, 0907.3610.

[26]  R. Nishi,et al.  PHYSICAL PROPERTIES OF DENSE CORES IN THE ρ OPHIUCHI MAIN CLOUD AND A SIGNIFICANT ROLE OF EXTERNAL PRESSURES IN CLUSTERED STAR FORMATION , 2009, 0907.2558.

[27]  Pavel Kroupa,et al.  Estimators for the exponent and upper limit, and goodness-of-fit tests for (truncated) power-law distributions , 2009, 0905.0474.

[28]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[29]  N. Evans,et al.  PROPERTIES OF THE YOUNGEST PROTOSTARS IN PERSEUS, SERPENS, AND OPHIUCHUS , 2008, 0809.4012.

[30]  R. Simpson,et al.  The initial conditions of star formation – VIII. An observational study of the Ophiuchus cloud L1688 and implications for the pre‐stellar core mass function , 2008, 0807.4382.

[31]  Lawrence Livermore National Lab.,et al.  Driven and Decaying Turbulence Simulations of Low-Mass Star Formation: From Clumps to Cores to Protostars , 2008, 0806.1045.

[32]  E. Rosolowsky,et al.  The Mass Distribution and Lifetime of Prestellar Cores in Perseus, Serpens, and Ophiuchus , 2008, 0805.1075.

[33]  A. Goodman,et al.  CO Isotopologues in the Perseus Molecular Cloud Complex: the X-factor and Regional Variations , 2008, 0802.0708.

[34]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[35]  E. Mamajek On the distance to the Ophiuchus star-forming region , 2007, 0709.0505.

[36]  A. Whitworth,et al.  The James Clerk Maxwell Telescope Legacy Survey of Nearby Star‐forming Regions in the Gould Belt , 2007, 0707.0169.

[37]  N. Peretto,et al.  The initial conditions of star formation in the Ophiuchus main cloud: Kinematics of the protocluster condensations , , 2007, 0706.1535.

[38]  A. Whitworth,et al.  The dust temperatures of the pre-stellar cores in the ρ Oph main cloud and in other star-forming regions: consequences for the core mass function , 2007, 0705.2941.

[39]  D. Ward-Thompson,et al.  A SCUBA survey of Orion -the low-mass end of the core mass function , 2006, astro-ph/0611164.

[40]  J. Cernicharo,et al.  The Excitation of N2H+ in Interstellar Molecular Clouds. I. Models , 2006, astro-ph/0606479.

[41]  A. Whitworth,et al.  SCUBA observations of the Horsehead Nebula - what did the horse swallow? , 2006, astro-ph/0603604.

[42]  P. Andre',et al.  A SCUBA survey of L1689 ¿ the dog that didn't bark , 2006, astro-ph/0603203.

[43]  C. Koen On the upper limit on stellar masses in the Large Magellanic Cloud cluster R136 , 2006 .

[44]  R. Klessen,et al.  Quiescent and Coherent Cores from Gravoturbulent Fragmentation , 2003, astro-ph/0306055.

[45]  P. Andre',et al.  Quiescent Dense Gas in Protostellar Clusters: The Ophiuchus A Core , 2004, astro-ph/0408411.

[46]  W. Holland,et al.  Star-like activity from a very young ‘isolated planet’ , 2003 .

[47]  E. al.,et al.  From molecular cores to planet-forming disks: An SIRTF legacy program , 2003, astro-ph/0305127.

[48]  P. Caselli,et al.  N2H+(1–0) survey of massive molecular cloud cores , 2003, astro-ph/0304469.

[49]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[50]  P. Caselli,et al.  Molecular Ions in L1544. II. The Ionization Degree , 2001, astro-ph/0109023.

[51]  P. Andre',et al.  The initial conditions of isolated star formation – V. ISOPHOT imaging and the temperature and energy balance of pre stellar cores , 2001, astro-ph/0109173.

[52]  P. Andre',et al.  A SCUBA survey of the NGC 2068/2071 protoclusters , 2001 .

[53]  A. A. Kaas,et al.  ISOCAM observations of the rho Ophiuchi cloud: Luminosity and mass functions of the pre-main sequence embedded cluster , 2001, astro-ph/0103373.

[54]  J. Alves,et al.  Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight , 2001, Nature.

[55]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[56]  D. Johnstone,et al.  Large-Area Mapping at 850 Microns. II. Analysis of the Clump Distribution in the ρ Ophiuchi Molecular Cloud , 2000 .

[57]  S. Basu Magnetic Fields and the Triaxiality of Molecular Cloud Cores , 2000, astro-ph/0008243.

[58]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[59]  T. Wilson Isotopes in the interstellar medium and circumstellar envelopes , 1999 .

[60]  A. Goodman,et al.  Coherence in Dense Cores. II. The Transition to Coherence , 1998 .

[61]  Holger S. P. Müller,et al.  THE COLOGNE DATABASE FOR MOLECULAR SPECTROSCOPY, CDMS , 2001 .

[62]  D. Emerson Interpreting Astronomical Spectra , 1999 .

[63]  B. Elmegreen A Fractal Origin for the Mass Spectrum of Interstellar Clouds. II. Cloud Models and Power-Law Slopes , 1996, astro-ph/0112528.

[64]  A. Goodman,et al.  The Magnetic Fields in the Ophiuchus and Taurus Molecular Clouds , 1996 .

[65]  L. Blitz,et al.  Proto-brown dwarfs. 2: Results in the Ophiuchus and Taurus moleculra clouds , 1995 .

[66]  E. Young,et al.  Further Mid-Infrared Study of the rho Ophiuchi Cloud Young Stellar Population: Luminosities and Masses of Pre--Main-Sequence Stars , 1994 .

[67]  P. Andre',et al.  A submillimetre continuum survey of pre-protostellar cores , 1994 .

[68]  A. Goodman,et al.  THE MAGNETIC FIELD IN THE OPHIUCHUS DARK CLOUD COMPLEX , 1994 .

[69]  P. Andre',et al.  From T Tauri stars to protostars: Circumstellar material and young stellar objects in the rho Ophiuchi cloud , 1994 .

[70]  V. Maslov On the integral equation , 1994 .

[71]  Alyssa A. Goodman,et al.  OH Zeeman observations of dark clouds , 1993 .

[72]  P. Andre',et al.  Submillimeter Continuum Observations of rho Ophiuchi A: The Candidate Protostar VLA 1623 and Prestellar Clumps , 1993 .

[73]  E. Young,et al.  Near-infrared observations of young stellar objects in the Rho Ophiuchi dark cloud , 1992 .

[74]  G. Fuller,et al.  Dense Cores in Dark Clouds. VII. Line Width--Size Relations , 1992 .

[75]  E. Feigelson,et al.  A Rich Cluster of Radio Stars in the rho Ophiuchi Cloud Cores , 1991 .

[76]  I. Gatley,et al.  A spectroscopic study of the Dr 21 outflow source. III - The CO line emission , 1991 .

[77]  S. Nozawa,et al.  A Remarkable Multilobe Molecular Outflow: rho Ophiuchi East, Associated with IRAS 16293-2422 , 1990 .

[78]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[79]  R. Loren The Cobwebs of Ophiuchus. I. Strands of 13CO: The Mass Distribution , 1989 .

[80]  D. Egret,et al.  The simbad astronomical database , 1991 .

[81]  E. Young,et al.  High-resolution IRAS observations of the Rho Ophiuchi cloud core , 1986 .

[82]  C. Lada,et al.  The discovery of new embedded sources in the centrally condensed core of the Rho Ophiuchi dark cloud - The formation of a bound cluster , 1983 .

[83]  R. Wilson,et al.  The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. , 1982 .

[84]  H. Dottori Lyman continuum photons emission from hot stars , 1980 .

[85]  F. Vrba Role of magnetic fields in the evolution of five dark cloud complexes , 1977 .

[86]  F. Vrba,et al.  Further study of the stellar cluster embedded in the Ophiuchus dark cloud complex , 1975 .

[87]  D. Peterson,et al.  Surface-gravity determinations for main- sequence B stars. , 1968 .

[88]  W. Bonnar,et al.  Boyle's Law and gravitational instability , 1956 .

[89]  E. Salpeter The Luminosity function and stellar evolution , 1955 .