Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity

[1]  S. Jackson,et al.  Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks , 2014, Nature Structural &Molecular Biology.

[2]  H. Ogiwara,et al.  Fine-tuning of DNA damage-dependent ubiquitination by OTUB2 supports the DNA repair pathway choice. , 2014, Molecular cell.

[3]  S. Nakajima,et al.  Ubiquitin-Specific Protease 5 Is Required for the Efficient Repair of DNA Double-Strand Breaks , 2014, PloS one.

[4]  Helen Yu,et al.  Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair , 2013, Proceedings of the National Academy of Sciences.

[5]  Lei Li,et al.  The mINO80 chromatin remodeling complex is required for efficient telomere replication and maintenance of genome stability , 2013, Cell Research.

[6]  N. Mailand,et al.  The Deubiquitylating Enzyme USP44 Counteracts the DNA Double-strand Break Response Mediated by the RNF8 and RNF168 Ubiquitin Ligases* , 2013, Journal of Biological Chemistry.

[7]  S. Gasser,et al.  Nucleosome remodelers in double-strand break repair. , 2013, Current opinion in genetics & development.

[8]  D. Durocher,et al.  Regulation of DNA damage responses by ubiquitin and SUMO. , 2013, Molecular cell.

[9]  A. Yoshida,et al.  CSN5 specifically interacts with CDK2 and controls senescence in a cytoplasmic cyclin E-mediated manner , 2013, Scientific Reports.

[10]  M. Summers,et al.  Skp1-Cul1-F-box Ubiquitin Ligase (SCFβTrCP)-mediated Destruction of the Ubiquitin-specific Protease USP37 during G2-phase Promotes Mitotic Entry* , 2012, The Journal of Biological Chemistry.

[11]  S. Jackson,et al.  A High-Throughput, Flow Cytometry-Based Method to Quantify DNA-End Resection in Mammalian Cells , 2012, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[12]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[13]  S. Jackson,et al.  RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. , 2012, Genes & development.

[14]  G. Dianov,et al.  ATM-Dependent Downregulation of USP7/HAUSP by PPM1G Activates p53 Response to DNA Damage , 2012, Molecular cell.

[15]  Atsushi Miyawaki,et al.  [Visualizing spatiotemporal dynamics of multicellular cell-cycle progression]. , 2012, Seikagaku. The Journal of Japanese Biochemical Society.

[16]  P. Wallich,et al.  taking shape , 2018, Electronics Letters.

[17]  Z. Herceg,et al.  Mammalian Ino80 Mediates Double-Strand Break Repair through Its Role in DNA End Strand Resection , 2011, Molecular and Cellular Biology.

[18]  David J. Rawlings,et al.  Tracking genome engineering outcome at individual DNA breakpoints , 2011, Nature Methods.

[19]  S. Jackson,et al.  Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. , 2011, Genes & development.

[20]  Yong Cai,et al.  Subunit Organization of the Human INO80 Chromatin Remodeling Complex , 2011, The Journal of Biological Chemistry.

[21]  S. Hur,et al.  Human INO80 chromatin-remodelling complex contributes to DNA double-strand break repair via the expression of Rad54B and XRCC3 genes. , 2010, The Biochemical journal.

[22]  M. Cazales,et al.  A screen for deubiquitinating enzymes involved in the G2/M checkpoint identifies USP50 as a regulator of HSP90-dependent Wee1 stability , 2010, Cell cycle.

[23]  A. Gingras,et al.  Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1 , 2010, Nature.

[24]  M. O’Connor,et al.  Sensitivity to Poly(ADP-ribose) Polymerase (PARP) Inhibition Identifies Ubiquitin-specific Peptidase 11 (USP11) as a Regulator of DNA Double-strand Break Repair* , 2010, The Journal of Biological Chemistry.

[25]  S. Jackson,et al.  Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks , 2009, Nature.

[26]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[27]  Keith D Wilkinson,et al.  Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. , 2009, Annual review of biochemistry.

[28]  Stephen P. Jackson,et al.  Human CtIP Mediates Cell Cycle Control of DNA End Resection and Double Strand Break Repair*S⃞ , 2009, Journal of Biological Chemistry.

[29]  Anastas Gospodinov,et al.  RAD51 foci formation in response to DNA damage is modulated by TIP49. , 2008, The international journal of biochemistry & cell biology.

[30]  T. Ohta,et al.  BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. , 2009, Cancer research.

[31]  S. Jackson,et al.  DNA helicases Sgs1 and BLM promote DNA double-strand break resection. , 2008, Genes & development.

[32]  M. Washburn,et al.  Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. , 2008, Molecular cell.

[33]  M. Kastan DNA Damage Responses: Mechanisms and Roles in Human Disease , 2008, Molecular Cancer Research.

[34]  Atsushi Miyawaki,et al.  Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression , 2008, Cell.

[35]  Laurence Pelletier,et al.  Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase , 2007, Science.

[36]  Michael B. Yaffe,et al.  RNF8 Transduces the DNA-Damage Signal via Histone Ubiquitylation and Checkpoint Protein Assembly , 2007, Cell.

[37]  Jiri Bartek,et al.  RNF8 Ubiquitylates Histones at DNA Double-Strand Breaks and Promotes Assembly of Repair Proteins , 2007, Cell.

[38]  Jiri Bartek,et al.  Human CtIP promotes DNA end resection , 2007, Nature.

[39]  Pier Paolo Di Fiore,et al.  Human USP3 Is a Chromatin Modifier Required for S Phase Progression and Genome Stability , 2007, Current Biology.

[40]  Yang Shi,et al.  A YY1–INO80 complex regulates genomic stability through homologous recombination–based repair , 2007, Nature Structural &Molecular Biology.

[41]  H. Kimura,et al.  Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells. , 2007, Cancer research.

[42]  T. Taniguchi,et al.  Proteasome function is required for DNA damage response and fanconi anemia pathway activation. , 2007, Cancer research.

[43]  Aedín C Culhane,et al.  RAP80 Targets BRCA1 to Specific Ubiquitin Structures at DNA Damage Sites , 2007, Science.

[44]  B. A. Ballif,et al.  ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage , 2007, Science.

[45]  A. Goldberg,et al.  hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37 , 2006, The EMBO journal.

[46]  M. Hochstrasser,et al.  Modification of proteins by ubiquitin and ubiquitin-like proteins. , 2006, Annual review of cell and developmental biology.

[47]  Tohru Natsume,et al.  A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes , 2006, The EMBO journal.

[48]  M. Washburn,et al.  Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1 , 2006, Nature Cell Biology.

[49]  Y. Shiloh The ATM-mediated DNA-damage response: taking shape. , 2006, Trends in biochemical sciences.

[50]  René Bernards,et al.  The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. , 2005, Molecular cell.

[51]  S. Jackson,et al.  Sensing and repairing DNA double-strand breaks. , 2002, Carcinogenesis.

[52]  J. Hoeijmakers Genome maintenance mechanisms for preventing cancer , 2001, Nature.

[53]  K. Khanna,et al.  DNA double-strand breaks: signaling, repair and the cancer connection , 2001, Nature Genetics.

[54]  Wei Xu,et al.  Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome , 1997, Nature.