Validation of a bone loading estimation algorithm for patient-specific bone remodelling simulations.

[1]  Keita Ito,et al.  Subject-specific bone loading estimation in the human distal radius. , 2013, Journal of biomechanics.

[2]  Keita Ito,et al.  Patient-specific bone modelling and remodelling simulation of hypoparathyroidism based on human iliac crest biopsies. , 2012, Journal of biomechanics.

[3]  Baohua Ji,et al.  Analysis of microstructural and mechanical alterations of trabecular bone in a simulated three-dimensional remodeling process. , 2012, Journal of biomechanics.

[4]  Gianni Campoli,et al.  Computational load estimation of the femur. , 2012, Journal of the mechanical behavior of biomedical materials.

[5]  R. Müller,et al.  Bone morphology allows estimation of loading history in a murine model of bone adaptation , 2012, Biomechanics and modeling in mechanobiology.

[6]  J. Johnston,et al.  Direct in vivo strain measurements in human bone-a systematic literature review. , 2012, Journal of biomechanics.

[7]  Ralph Müller,et al.  Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry. , 2011, Bone.

[8]  D. Lieberman,et al.  A Wolff in sheep's clothing: trabecular bone adaptation in response to changes in joint loading orientation. , 2011, Bone.

[9]  K. Ito,et al.  Analysis of bone architecture sensitivity for changes in mechanical loading, cellular activity, mechanotransduction, and tissue properties , 2011, Biomechanics and modeling in mechanobiology.

[10]  van René René Donkelaar,et al.  Bone structural changes in osteoarthritis as a result of mechanoregulated bone adaptation: a modeling approach. , 2011, Osteoarthritis and cartilage.

[11]  R. Huiskes,et al.  Simulations of trabecular remodeling and fatigue: is remodeling helpful or harmful? , 2011, Bone.

[12]  Ralph Müller,et al.  In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. , 2011, Bone.

[13]  T. Adachi,et al.  Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  G. H. van Lenthe,et al.  Non-invasive bone competence analysis by high-resolution pQCT: an in vitro reproducibility study on structural and mechanical properties at the human radius. , 2009, Bone.

[15]  P. Prendergast,et al.  An algorithm for bone mechanoresponsiveness: implementation to study the effect of patient-specific cell mechanosensitivity on trabecular bone loss , 2008, Computer methods in biomechanics and biomedical engineering.

[16]  S. Boyd Site-specific variation of bone micro-architecture in the distal radius and tibia. , 2008, Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry.

[17]  M. Bouxsein,et al.  In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. , 2005, The Journal of clinical endocrinology and metabolism.

[18]  Taiji Adachi,et al.  Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling. , 2005, Medical engineering & physics.

[19]  R. Guldberg,et al.  Trabecular bone microdamage and microstructural stresses under uniaxial compression. , 2005, Journal of biomechanics.

[20]  R Huiskes,et al.  A theoretical framework for strain-related trabecular bone maintenance and adaptation. , 2005, Journal of biomechanics.

[21]  Taiji Adachi,et al.  Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. , 2002, Journal of biomechanics.

[22]  S J Hollister,et al.  Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. , 2001, Journal of biomechanical engineering.

[23]  Rik Huiskes,et al.  Effects of mechanical forces on maintenance and adaptation of form in trabecular bone , 2000, Nature.

[24]  R Huiskes,et al.  Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species , 1996, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[25]  B. van Rietbergen,et al.  COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS EMPLOYING VOXEL DATA , 1996 .

[26]  C. Turner,et al.  Skeletal adaptations to mechanical usage: results from tibial loading studies in rats. , 1995, Bone.

[27]  R. Huiskes,et al.  Proposal for the regulatory mechanism of Wolff's law , 1995, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[28]  H. Frost Bone “mass” and the “mechanostat”: A proposal , 1987, The Anatomical record.

[29]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[30]  Ralph Müller,et al.  Strain-adaptive in silico modeling of bone adaptation--a computer simulation validated by in vivo micro-computed tomography data. , 2013, Bone.

[31]  Keita Ito,et al.  Local changes due to bone remodelling are triggered by mechanical loading , 2012 .

[32]  Patrick J Prendergast,et al.  Bone remodelling algorithms incorporating both strain and microdamage stimuli. , 2007, Journal of biomechanics.

[33]  A. M. Parfitt,et al.  The cellular basis of bone remodeling: The quantum concept reexamined in light of recent advances in the cell biology of bone , 2006, Calcified Tissue International.

[34]  L. Alvarez,et al.  [The clinical utility of biochemical markers of bone remodeling]. , 1999, Medicina clinica.

[35]  MARC E. Levenston,et al.  Proximal Femoral Density Patterns are Consistent with Bicentric Joint Loads. , 1999, Computer methods in biomechanics and biomedical engineering.

[36]  L. S. Matthews,et al.  Trabecular bone remodeling: an experimental model. , 1991, Journal of biomechanics.

[37]  J. Currey The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone. , 1988, Journal of biomechanics.

[38]  L. Lanyon,et al.  Osteoregulatory nature of mechanical stimuli: Function as a determinant for adaptive remodeling in bone , 1987, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[39]  Wilhelm Roux,et al.  Der Kampf der Theile im Organismus. Ein Beitrag zur vervollständigung der mechanischen Zweckmässigkeitslehre, von Wilhelm Roux. , 1881 .